
The University of Texas at Arlington

Lecture 12
Timers and CCP

(Capture/Compare/PWM)

CSE 3442/5442
Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

PIC18 Timer Peripherals

2

3

PIC Timers
• PIC18 family microcontrollers have 2 to 5 timers on-board
• Timers can be used to generate time delays or to count

(outside) events happening “in the background”
• Some timers can also be used to control the timing of other

peripherals (some automatically like ADC)
• Every timer needs a clock that will make it to count
• Timers have the option to use at most ¼ of the main clock’s

frequency Fosc or use a separate external signal for clocking
– Timer: uses internal clock source (Fosc /4)

• “Wait this amount of fixed time” or
• “Let me know when X sec/ms/us/etc. have elapsed”

– Counter: fed pulses through one of the PIC’s pins
• “Count how many events/pulses occur on a pin” 3

Timer

• Software specified time delay or “background” time elapsed

main()
{
Setup Timer
Start Timer

//delay X ms/sec/etc.
while(timerNotDone);

continue…
}

4

Timer

• Software specified time delay or “background” time elapsed

main()
{
Setup Timer/Ints
Start Timer

continue…
}

interrupt timer()
{
//X time has elapsed
//perform ADC
//output
//etc.

} 5

Counter

• Count external/outside events and pulses

• IR Sensor
• Encoder
• Button
• Water Flow Sensor

1
2
3
4
…
150

Func()
{

…
} 6

Timer Length (Width or Mode)
and Preload

• 8-bit timers: Can count from 0 – 255
• 16-bit timers: Can count from 0 – 65,535
• 32-bit timers: Can count from 0 – 4,294,967,295
• Can start counting at 0 or any preload within range

• Ex. 8-bit Overflow:

– 0 1 2… 254 255 0 1 2…

– 200 201 202… 254 255 0 200 201…

OV

OV Reload Preload

7

Timer Overflow

Source: http://roberthall.net/PIC18F4550_Timers

8

http://roberthall.net/PIC18F4550_Timers

Prescaler

• Sometimes the frequency is too fast
• A prescaler divides the clock source to

obtain a smaller frequency (less frequent)
– 1, 2, 4, 8, 16, 32, 64, 128, 256…

Divide by
1:2, 1:4, … , 1:256

Fosc/4 Ftimer

Fin

9

Ex: F/4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4

10

How to Calculate Example
(Want 1.2 sec Delay)

• d = 1.2sec (time period)
• Fosc = 10MHz Fin = Fosc / 4 = 2.5MHz
• 16-bit Timer: 0 – 65,535

• X = d * Fin = 1.2s * 2.5Mhz

• X = d * Fin = 1.2sec * 2,500,000 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐

• X = d * Fin = 1.2s * 2.5Mhz = 3,000,000 cycles
– 3,000,000 cycles (ticks) occur in 1.2s time span

11

How to Calculate Example
(Want 1.2 sec Delay)

• X = d * Fin = 1.2s * 2.5Mhz = 3,000,000
– 3,000,000 cycles (pulses) occur in a 1.2s time span

• Use prescaler to bring down X to fit into the
16-bit Timer register (0 – 65,535)
– 3,000,000 / 4 = 750,000 (> 65,535)
– 3,000,000 / 16 = 187,500 (> 65,535)
– 3,000,000 / 32 = 93,750 (> 65,535)
– 3,000,000 / 64 = 46,875 (< 65,535)

Use Prescaler 1:64
12

How to Calculate Example
(Want 1.2 sec Delay)

• X = d * Fin = 1.2s * 2.5Mhz = 3,000,000
– 3,000,000 cycles/ticks occur in a 1.2s time span

• Using Prescaler 1:64 to find Preload value
– Now 46,875 ticks/cycles will occur in 1.2s span

• Preload = 65,535 – 3,000,000/64
= 65,535 – 46,875
= 18,661

Instead of counting 0 65,535
Now count from 18,661 65,535 13

How to Calculate Example
(Want 1.2 sec Delay)

• So if we want a 1.2 second delay when
using a 10MHz oscillator…
1. We select a 16-bit Timer
2. Select the prescaler 1:64
3. Load the timer register with 18,661 (dec)
4. Turn on the Timer
5. When the Timer overflows, we know that

exactly 1.2s has passed

14

Four PIC18F452 Timers

• Timer0: 8 or 16-bit timer/counter
– T0CON, TMR0H:TMR0L
– Prescalers: 1:2, 1:4, … ,1:128, 1:256

• Timer1: 16-bit timer/counter
– T1CON, TMR1H:TMR1L
– Prescalers: 1:1, 1:2, 1:4, 1:8

• Timer2: 8-bit timer
– T2CON, TMR2L
– Prescalers: 1:1, 1:4, 1:16 and Postscalers: 1:1 … 1:16

• Timer3: 16-bit timer/counter
– T3CON, TMR3H:TMR3L
– Prescalers: 1:1, 1:2, 1:4, 1:8

15

SFRs are Used to “Control”
the Timer Peripherals

RAM
FileReg

SFRs

16

17

18

Timer0
• Timer0 can be used as an 8-bit or as a 16-bit timer
• Thus, two SFRs are used to contain the count:

or

• T0CON is the control register
• TMR0IF is the interrupt flag in the INTCON register
• The clock source for Timer0 may be internal or external

18

19

Timer0 Control Register
T0CON

• Note that timer
interrupt enable/flag
bits are in registers
related to interrupts
(e.g., INTCON)

• When the timer
overflows, TMR0IF
is set.

• 16- vs. 8-bit timer
• Prescalers are

useful for large time
delays

19

20

Timer0 8-bit Programming
1. Select 8-bit mode and prescaler
2. Load TMR0L with preload value (ignore TMR0H)
3. Start timer (TMR0ON = 1)
4. Monitor TMR0IF (or set interrupt on it)
5. When TMR0IF is set, stop the timer, reset the flag (and if needed go to step 2)

Prescaler
Bypass

Prescaler?

Port RA4 or Int. Clock Source

Flag Bit

0 – 255

Timer vs. Counter

20

21

Timer0 16-bit Programming
1. Select 16-bit mode and prescaler
2. Load TMR0H and then TMR0L with preload values (load HIGH first!!)

– Ex: 18,661 dec = 0x48E5 TMR0H = 0x48 and TMR0L = 0xE5
3. Start timer (TMR0ON = 1)
4. Monitor TMR0IF (or set interrupt on it)
5. When TMR0IF is set, stop the timer, reset the flag (and if needed go to step 2)

Prescaler Bypass
Prescaler?

Port RA4 or Int. Clock Source Flag Bit
0 – 65,536

21

22

Timer1

• Timer1 is 16-bit only
• T1CON is the control register
• TMR1IF is the interrupt flag in the PIR1 register
• Prescaler does not support divisions above 1:8
• Timer1 has 2 external clock sources and 1 regular internal

– Clock fed into T1CK1 pin (RC0)
– Crystal (typically 32-kHz) connected between the T1CKI and T1OSI

PINS (RC0&RC1) – for saving power during sleep mode. Timer1 is
not shut down allowing use a clock that can be used for waking up

TMR1H TMR1L

22

23

Timer1 Control Register
T1CON

• 16-bit mode only
• Smaller prescaler range
• Timer1 can be used as

1. timer
2. synchronous counter

(T1SYNC)
3. asynchronous counter

23

24

Timer1 Block Diagram
Used with
CCP option

External
Clock
Signal In

Timer 1 crystal, e.g.,
32KHz for sleep mode

24

25

Timer2

• Timer2 is an 8-bit only
• T2CON is the control register
• TMR2IF is the interrupt flag in the PIR1 register
• Timer2 has a period register PR2; Timer2 can be set to

count only to PR2 and set TMR2IF then
• Clock source is only Fosc/4 (Timer2 cannot be a counter)
• Has both a prescaler and a postscaler

TMR2

25

26

Timer2 Control Register
T2CON

26

Timer2 Block Diagram

PR2:

TMR2:
FLAG = 1

27

28

Timer3

• Timer3 is 16-bit only
• T3CON is the control register
• TMR3IF is the interrupt flag in the PIR2 register
• Can work with CCP peripheral (later)
• Timer3 has 2 external clock sources and 1 regular internal

– Same external source(s) as timer1

• Can be used as timer, ascynchronous, or synchronous counter

TMR3H TMR3L

28

Timer3 Block Diagram

29

30

Timer3 Control Register
T3CON

30

Timer0 Interrupt Example
1. In T0CON…

1. Select 16-bit mode
2. Select internal or external clock source
3. Allow prescaler option if desired
4. Select desired prescaler

2. Load TMR0H and TMR0L with preloads (load HIGH first!!)
– Ex: 18,661 dec = 0x48E5 TMR0H = 0x48 and TMR0L = 0xE5

3. In INTCON…
1. Enable the TMR0IE interrupt bit
2. Enable the PEIE peripheral interrupt bit
3. Enable the GIE global interrupt bit

4. Start timer (T0CONbits.TMR0ON = 1)
5. Monitor TMR0IF (if only polling)
6. When overflow occurs (1.2s has passed) TMR0IF is set to 1
7. In the ISR…

1. Identify the interrupt source
2. Stop the timer (disable Timer0)
3. Reset the flag (if needed go to step 2 of writing preload values)

31

32

Using PIC18 Timers for CCP
(Capture, Compare, and PWM)

• Timer0 is usually just for generic timing
• Timers 1 and 3 can be used for capture and

compare features
– T3CON is used to chose the timer for CCP

• Timer2 is used for PWM
– Note: These rules do not always apply, have to

check the specific PIC18 datasheet

32

33

Using PIC18 Timers for CCP
(Capture, Compare, and PWM)

33

CCP

• Compare (input)
– Count outside events (incoming to the PIC’s pins)
– When X have occurred do something

• Capture (input)
– Measure an unknown signal’s frequency (period) or

PWM Duty Cycle
• PWM (output)

– Send a precise signal out of the PIC

34

PWM Basics
(Pulse Width Modulation)

• Digital signals have two distinct levels: high and low
• These levels are usually represented by a voltage

– e.g., in PIC low is 0V and high is VCC (5V)
• A temporal digital signal changes with time from low

to high and back
• Thus we can describe temporal digital signals with a

series of values representing the time for which
they stay in one state

• Periodic temporal digital signals have a distinct
frequency
– the inverse of the time between two consecutive rising

edges 35

PWM Basics (cont’d)

• If t1 + t2 remain constant frequency remains constant

• Such periodic signals can still have varying times they spend
in high vs. low state

• PWM Duty Cycle is the portion of the pulse that stays HIGH
relative to the entire period

DC[%] = 100 ∗ t1
t1 + t2

36

PWM Basics (cont’d)

Source: http://www.hho4free.com/pulse_width_modulator__pwm.html

37

http://www.hho4free.com/pulse_width_modulator__pwm.html

PWM Basics (cont’d)

• There are various sensors that provide their output as PWM
signals, where the DC corresponds to the reading

• There are various actuators that work well with a PWM input

• An appropriate RC filter (Integrator)
can make an analog signal out
of a PWM digital signal

R

C
PWM Analog

Source: http://www.electronics-tutorials.ws/
38

http://www.electronics-tutorials.ws/

PIC18’s CCP Modules

• PIC18s have 0 – 5 CCP modules on-board (CCPx) with 3 modes
• Capture

– can use an external input to copy timer values into a 16-bit register
– provides the capability of measuring the period of a pulse

• Compare
– enables the counter value of timers to be compared to a 16-bit register
– if equal, then perform an action

• PWM
– can be used as a quasi-analog output (timed digital output with duty

cycle setting)
• These are great for driving motors, reading encoders, IR comm.
• For DC motor control some of the CCPs have been enhanced

and are called ECCP
• The PIC18F452 has 2 CCP Modules: CCP1 & CCP2

– can be used at the same time but only 1 mode per CCP at a time 39

40

Timers and CCP Association

These rules do not always apply – have to check the specific PIC18 datasheet 40

T3CON

41

CCPx Pins

42

43

CCP Module Basics

• Each CCP module has 3 associated registers
– CCPxCON controlling the modes
– CCPxL and CCPxH as a 16-bit

compare/capture/PWM duty cycle register

• Each CCP module has a pin associated with
it (input or output)

43

44

CCP 1 & 2 Module Control
CCPxCON

prescalers

44

Relevant Registers

45

Compare Mode

~ IF(CCP == TMR1/3) THEN…
• The CCPRxH:CCPRxL is loaded by the user
• If Timer1 TMR1H:TMR1L (or Timer3 – T3CON)

count becomes equal to the above set value then
the Compare module can:
1. Drive the CCPx pin high (CCPx config’d as out)
2. Drive the CCPx pin low (CCPx config’d as out)
3. Toggle the CCPx pin (CCPx config’d as out)
4. Trigger a CCPxIF interrupt and clear the timer
5. CCP2 can be used to kick off the A/D converter

4646

Compare Mode

TMR++

If == CCPH:L

YES?

Set HIGH or LOW

Toggle
ADC GO

Int Flag

PIC18F452

47

Compare Mode Programming

0. Set up CCP interrupt if needed
1. Initialize CCPxCON for compare
2. Pick timer source (T3CON)
3. Initialize the CCPRxH:CCPRxL 16-bit value
4. Make sure CCPx pin is output if used

– setting appropriate TRISbits
5. Initialize Timer1 (or Timer3)
6. Start Timer1 (or Timer3)
7. Poll CCPxIF flag or make sure interrupt is handled

4848

Capture Mode

• The CCPx pin is set as input (set TRISbits)
• When an external event triggers the CCPx pin, then

the TMR1H:TMR1L (or Timer3) values will be loaded
into CCPRxH:CCPRxL

• Four options for CCPx pin triggering:
– Every falling edge
– Every rising edge
– Every 4th rising edge
– Every 16th rising edge

• Typical applications are measuring frequency or
pulsewidth 4949

Capture Mode Programming for
Frequency Measurement

1. Initialize CCPxCON for capture
2. Make CCPx pin an input pin (TRISB/TRISC)
3. Pick timer source (T3CON)
4. On first rising edge, Timer1/3 is loaded into CCPRxH:CCPRxL

– remember values
5. On next rising edge, Timer1/3 is loaded into CCPRxH:CCPRxL

– subtract previous values from current values
6. You have now the period of the signal captured by timer ticks.

Some basic math will give you frequency

5050

Capture Mode Programming for
Frequency Measurement

TMR++ A: TMR B: TMR

CCPx 1 full period
(time)

PIC18F452

A B CCPH:LCCPH:LA
B

51

Capture Mode Programming for
Measuring PWM Duty Cycle

1. Initialize CCPxCON for capture
2. Make CCPx pin an input pin (TRISB/TRISC)
3. Pick timer source (T3CON)
4. On rising edge, Timer is started & mode set to falling edge
5. On falling edge the CCPRxH:CCPRxL should be saved, CCP

should be set to rising edge
6. On rising edge CCPRxH:CCPRxL is saved

– Now we have measurements for t1 and t2
7. DC can be calculated while new measurement is prepared

5252

Capture Mode Programming for
Measuring PWM Duty Cycle

TMR++ A: TMR B: TMR C:TMR

CCPx

1 full period
(time)

PIC18F452

A B CCPH:LCCPH:LA
B

C CCPH:L

C
HIGH time

53

Capture Mode Programming for
Measuring PWM Duty Cycle

TMR++ A: TMR B: TMR C:TMR

CCPx

1 full period
(time)

PIC18F452

A B CCPH:LCCPH:LA
B

C CCPH:L

C
HIGH time

DC = 𝐵𝐵 −𝐴𝐴
𝐶𝐶 −𝐴𝐴

54

PWM Mode
(Generate Precise Output)

55

56

PWM Mode

• PWM output can be created without tedious
programming of the compare mode or timers

• ECCP’s PWM mode enables generating temporal
digital signals of varying frequencies and varying DC
– recall: width of the pulse indicates some measured quantity

• Recall, that the PWM Duty Cycle is the portion of the
pulse at HIGH relative to the entire period
– DC[%] = 100*t1/(t1+t2)

• For PWM, Timer2 is used
• Recall, that Timer 2 has a period register PR2

56

Timer2 Block Diagram

PR2:
0-255

TMR2:
FLAG = 1

57

PWM
Specify Two Things

Unit of time
(ms, us, etc.)

Unit of time
(ms, us, etc.)

58

PWM Mode
Desired Period and Frequency

• Tpwm = desired PWM period (time, secs/cycle)
• Fpwm = desired PWM freq. (rate, cycles/sec)

• Tpwm = 1 / Fpwm

• PR2: 0 – 255 (from TMR2)
• Tosc = 1 / Fosc

• Tpwm = 4*N*(PR2+1) / Fosc or….
• Tpwm = 4*N*(PR2+1) * Tosc

– where N is the prescaler of TMR2 (1, 4, 16) 59

PWM Mode
Desired Period and Frequency

• Fastest Rate
– Min Tpwm = 4*1*(0+1) * Tosc = 4 Tosc

– Max Fpwm = 1 / Tpwm = Fosc / 4

• Slowest Rate
– Max Tpwm = 4*16*(255+1) * Tosc = 16,384 Tosc

– Min Fpwm = 1 / Tpwm = Fosc / 16,384

60

61

PWM Mode Ex.
Desired Period and Frequency

61

62

PWM Mode Ex.
Desired Period and Frequency

62

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

63

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

64

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

65

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

66

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

67

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

68

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

69

PWM Period and Duty Cycle

Fosc
4

Timer2
PR2

Fosc
CCPRxL

CCPxCON

PWM
Period

PWM
Duty Cycle

70

71

PWM Mode
Desired Duty Cycle

• PIC18F452 has “10-bit” duty cycle resolution
– Remember, DC is just a percentage of the period
Ex:
– DC[%] = 75% = .75
– TPWM = .4ms
– TDC = (.75)(.4ms) = .3ms

Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

----------------------------------CCPRxL------------------------------- CCPxCON
DCxB1

CCPxCON
DCxB0

71

PWM Example

• Knowns
– FOSC

– FPWM

– DC(%)

• So we also know
– TOSC

– TPWM

– TDC

• Unknowns to Calculate
– PR2 register value

• To set TPWM (PWM period)
– CCPR1L:CCP1CON<5:4>

register value
• To set TDC (Duty Cycle period)

72

PWM Example

• FOSC = 10 MHz
• FPWM = 2.5 kHz
• DC(%) = 75%

Calculate
these values

 Note
PR2 (8-bit): 0-255
CCPR… (10-bit): 0-1023

73

74

PWM Mode - Programming

1. Set PWM period by setting PR2 and T2CON (prescaler)
2. Set PWM duty cycle by calculating and writing top 8 bits

to CCPRxL and the remainder 2 to CCPxCON<5:4> bits
3. Set the CCPx as output (TRIS)
4. Clear TMR2
5. Set CCPx to PWM mode
6. Start Timer 2
7. CCPx output pin will constantly keep outputting your signal

at the set period and DC until you turn it off/disable it

74

75

DC Motor Drive Half bridge

75

76

DC Motor Drive Full H Bridge

76

Rotary Encoders

• Rotary encoders are rotational sensors (one component of servos), they
can provide precise readings (PWM) of shafts turning (flow valves, etc.)

• Internally they can be mechanical, magnetic (induction) based or optical
• Optical encoders are usually of high precision, contain encoder wheels
• Encoders can be absolute or incremental
• They can be read using timers but will tie up microcontroller; there are

special purpose circuitry to read them, which have parallel or serial
interfaces to microcontrollers

77

CCP Questions?

• Lab 7 will be detailed and given out soon
– Take-home lab/project
– Explained in lab and class

• Remaining Lectures…
– Hardware Connections (ICSP, .hex details, etc.)
– Communication (MSSP, SPI, USART, I2C, etc.)

78

	Lecture 12�Timers and CCP�(Capture/Compare/PWM)
	PIC18 Timer Peripherals
	PIC Timers
	Timer
	Timer
	Counter
	Timer Length (Width or Mode)�and Preload
	Timer Overflow
	Prescaler
	Ex: F/4
	How to Calculate Example�(Want 1.2 sec Delay)
	How to Calculate Example�(Want 1.2 sec Delay)
	How to Calculate Example�(Want 1.2 sec Delay)
	How to Calculate Example�(Want 1.2 sec Delay)
	Four PIC18F452 Timers
	SFRs are Used to “Control” the Timer Peripherals
	Slide Number 17
	Timer0
	Timer0 Control Register�T0CON
	Timer0 8-bit Programming
	Timer0 16-bit Programming
	Timer1
	Timer1 Control Register� T1CON
	Timer1 Block Diagram
	Timer2
	Timer2 Control Register� T2CON
	Timer2 Block Diagram
	Timer3
	Timer3 Block Diagram
	Timer3 Control Register� T3CON
	Timer0 Interrupt Example
	Using PIC18 Timers for CCP�(Capture, Compare, and PWM)
	Using PIC18 Timers for CCP�(Capture, Compare, and PWM)
	CCP
	PWM Basics�(Pulse Width Modulation)
	PWM Basics (cont’d)
	PWM Basics (cont’d)
	PWM Basics (cont’d)
	PIC18’s CCP Modules
	Timers and CCP Association
	T3CON
	CCPx Pins
	CCP Module Basics
	CCP 1 & 2 Module Control�CCPxCON
	Relevant Registers
	Compare Mode
	Compare Mode
	Compare Mode Programming
	Capture Mode
	Capture Mode Programming for Frequency Measurement
	Capture Mode Programming for Frequency Measurement
	Capture Mode Programming for Measuring PWM Duty Cycle
	Capture Mode Programming for Measuring PWM Duty Cycle
	Capture Mode Programming for Measuring PWM Duty Cycle
	PWM Mode�(Generate Precise Output)
	PWM Mode
	Timer2 Block Diagram
	PWM�Specify Two Things
	PWM Mode�Desired Period and Frequency
	PWM Mode�Desired Period and Frequency
	PWM Mode Ex.�Desired Period and Frequency
	PWM Mode Ex.�Desired Period and Frequency
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Mode�Desired Duty Cycle
	PWM Example
	PWM Example
	PWM Mode - Programming
	DC Motor Drive Half bridge
	DC Motor Drive Full H Bridge
	Rotary Encoders
	CCP Questions?

