The University of Texas at Arlington

Lecture 12
Timers and CCP

(Capture/Compare/PWM)

CSE 3442/5442
Embedded Systems 1

Based heavily on slides by Dr. Gergely Zaruba and Dr. Roger Walker

PIC18 Timer Peripherals

STACK,

PROGRAM |l —— FC

ROM Y RAM EEPROM
Program Data
Bus Bus ¥
CRU - l -
————————
Interrupt
Zantrol QsC Timers Farts cher
: Feripherals
Logic

Yo
FIMS

PIC Timers

P1C18 family microcontrollers have 2 to 5 timers on-board

Timers can be used to generate time delays or to count
(outside) events happening “in the background”

Some timers can also be used to control the timing of other
peripherals (some automatically like ADC)

Every timer needs a clock that will make it to count

Timers have the option to use at most ¥z of the main clock’s
frequency Fosc or use a separate external signal for clocking

— Timer: uses internal clock source (F,.. /4)
« “Wait this amount of fixed time” or
* “Let me know when X sec/ms/us/etc. have elapsed”

— Counter: fed pulses through one of the PIC’s pins
* “Count how many events/pulses occur on a pin” 3

Timer

CSE@UTA

o Software specified time delay or “background” time elapsed

1 ~ 140 [
= i s0o [
main
3 0 38 [
<+ { . 37 [
5 Setup Timer = [
S Start Timer 35 [
4 34 [
= 33 [
o //d(_elay_X ms/sec/etc. O
10 While(ttimerNotDone); =1 B
11 =30 [
12 continue... 2o [
13 } 28 [1
14 >7 [
15 -6 [
16 >5 [
17 >4 [
18 >3 [
19 ->= [
=20 -1 [

Timer

CSE@UTA

o Software specified time delay or “background” time elapsed

1 _/ 3O :l
- . 30 [1
main
= ain() 38 [
= Setup Timer/Ints 36 [
S Start Timer 35
- 34 [
= _ 33 |1
° continue... -
10 |} 31
11 30 |1
12 jinterrupt timer() 29
13 { 28 [1
14 . =27 -
45 /IXtime has elapsed > [
16 //perform ADC 25 H
17 Jloutput =24t
18 Jetc =23 =
19 ' =22
20 |} -1 3

CSE@UTA

Counter

* Count external/outside events and pulses

UL

IR Sensor
 Encoder

e Button

 Water Flow Sensor

(DCO‘JCD!‘ILCOI\)—L

Hininininininininininininininfiinininin

-
o

11 150

12
13
14
15
16
17
18
19
20

WD

N

40
39
38
37
36
35
34
33
32

31
20

Func()

29
28
27
26
25
24
23
22
21

HjE N NN NN N
v

Tlmer Length (Width or Mode)
and Preload

8-bit timers: Can count from 0 — 255

16-bit timers: Can count from 0 — 65,535

32-bit timers: Can count from 0 — 4,294,967,295
Can start counting at 0 or any preload within range

Ex. 8-bit Overflow:

oV

!

— 021222 ..22564->2552>0~>1->2...
OV - Reload Preload

7

— 200> 201> 202> ... 2 254 5 255 > 0 > 200 - 201...

7

Timer Overflow

prescaler

=N

— 0|o|o|ol{o|o]o]o||o]|o]ofo]{o|o]o]o0|ox0000 0

(0|00 O)|0]0[0](0]0)0]0[0[0[0]1|0x0001 0

1A A1 [1][1[1[1]o]oexFFFE [D
OxFFFF [0
olofofo][o]ofo]o][o]o]ofo][o]o]0]0 |=———m[1

timer flag

=1
=1
=
=i
=i
=i
=i
=1
=
=i
=i
=i
=i
=1
=1
=i

Source: http://roberthall.net/PIC18F4550 Timers

http://roberthall.net/PIC18F4550_Timers

Prescaler

CSE@UTA

e Sometimes the frequency Is too fast

* A prescaler divides the clock source to
obtain a smaller frequency (less frequent)

-1, 2,4, 8,16, 32, 64, 128, 256...

! =

osc’ " timer
HHI —— Prescaler — _J_ ‘ ‘ R
Fin Divide by

1:2, 1:4, ..., 1:256

Ex: F/4

R R E IR
5 6 7

g 9 10 11 12 13 14 15 16 17 18

I

10

How to Calculate Example
(Want 1.2 sec Delay)

d = 1.2sec (time period)
Foe=10MHz -2 F, =F
16-bit Timer: 0 — 65,535

[4 = 2.5MHz

0SC

X=d*F_, =1.2s*2.5Mhz

X=d*F,=1.2sec * 2,500,000
Sec

X=d*F,6=1.2s* 2.5Mhz = 3,000,000 cycles
— 3,000,000 cycles (ticks) occur in 1.2s time span

cycles

How to Calculate Example
(Want 1.2 sec Delay)

e X=d*F,=1.2s*2.5Mhz = 3,000,000
— 3,000,000 cycles (pulses) occur in a 1.2s time span

e Use prescaler to bring down X to fit into the
16-bit Timer register (0 — 65,535)
—3,000,000/4 =750,000 (>65,535)

— 3,000,000/ 16 = 187,500 (> 65,535)
—3,000,000/32= 93,750 (> 65,535)
— 3,000,000/ 64 = 46,875 (< 65,535)

—->Use Prescaler 1:64

12

How to Calculate Example
(Want 1.2 sec Delay)

e X=d*F,=1.2s* 2.5Mhz = 3,000,000
— 3,000,000 cycles/ticks occur in a 1.2s time span

e Using Prescaler 1:64 to find Preload value
— Now 46,875 ticks/cycles will occur in 1.2s span

 Preload = 65,535 — 3,000,000/64
= 65,535 - 46,875
= 18,661

Instead of counting 0 - 65,535 |

Now count from 18,661 = 65,535 13—

CSE@UTA

How to Calculate Example
(Want 1.2 sec Delay)

e So If we want a 1.2 second delay when
using a 10MHz oscillator...

g bk wWDhP=

We select a 16-bit Timer

Select the prescaler 1:64

Load the timer register with 18,661 (dec)
Turn on the Timer

When the Timer overflows, we know that
exactly 1.2s has passed

14

Four PIC18F452 Timers

CSE@UTA

TimerQ: 8 or 16-bit timer/counter
— TOCON, TMROH: TMROL
— Prescalers: 1:2, 1:4, ... ,1:128, 1:256

Timerl: 16-bit timer/counter

— T1CON, TMR1H:TMR1L

— Prescalers: 1:1, 1:2, 1:4, 1:8

Timer?2: 8-bit timer

— T2CON, TMR2L

— Prescalers: 1:1, 1:4, 1:16 and Postscalers: 1:1 ... 1:16

Timer3: 16-bit timer/counter
— T3CON, TMR3H:TMR3L
— Prescalers: 1:1, 1:2, 1:4, 1:8

15

SFRs are Used to “Control”
the Timer Peripherals

RAM
FileReg

PROGRAM |l —— FC

ROM 1/ EEPROM
Program ‘%aéa/ :
S S Y ~
ot = -
l . I I
—i .
I

Interrupt
Control O5C Timers Farts cher
: Feripherals
Logic

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Address Name Address Name Address MName Address Name
FFFh TOSU FDFh INDF2(® FBFh | CCPR1H FAFh IPR1
FFEN TOSH FDEh | POSTINC2(3) FBEh | CCPRIiL F9EN PIR1

FFDh TOSL FDDh | POSTDEC2® FBDh | CCP1CON FODh PIE1
CSEQUTA FFCh STKPTR FDCh | PREINC2() FBCh | CCPR2H Foch —
FFBh PCLATU FDBh | PLUSW2(3) FBBh | CCPR2L F9Bh —
FFAR PCLATH FDAh FSR2H FBAh | CCP2CON FOAR —
FFah PCL FD9h FSR2L FBOh — Fogh —
FFeh | TBLPTRU FD8h STATUS FB8h — Fo8h —
FF7h | TBLPTRH FD7h TMRBOH FB7h — Fo7h —
FF&h TBLPTRL FD6&h TMROL FB6h — Fogh | TRISE®@
FF5h TABLAT FD5h TOCON FB5h — Fosh | TRISD®@
FF4h PRODH FD4h — FB4h — Fo4dh | TRISC
FF3h PRODL FD3h | OSCCON FB3h TMR3H Fo3h | TRISB
FF2h INTCON FD2h LVDCON FB2h TMR3L Fo2h | TRISA
FFih | INTCON2 FD1h | WDTCON FB1h T3CON Fo1h —
FFOh | INTCONS3 FDON RCON FBOh — Fooh —
FEFh INDFOQ3! FCFh TMR1H FAFh SPBRG FBFh —
FEEh | POSTINCO®) FCEh TMR1L FAEh RCREG FBEh —
FEDh | POSTDECO®! FCDh T1CON FADR TXREG FeDh | LATE®@
FECh | PREINCO®) FCCh TMR2 FACh TXSTA FBCh | LATD@
FEBh | PLUSWO®) FCBh PR2 FABh RCSTA FBBh LATC
FEAR FSROH FCAh T2CON FAAR — FBAN LATB
FESh FSROL FCOh SSPBUF FASh EEADR Fagh LATA
FESh WREG FC8h SSPADD FABh | EEDATA Fash —
FE7h INDF1¢3} FC7h | SSPSTAT FA7h | EECONZ2 F87h —
FE6h | POSTINC1(3) FC6h | SSPCONT FABh | EECON1 F86h —
FEsh | POSTDEC1® FC5h | SSPCON2 FASh — F85h —
FE4h | PREINC1(3) FC4h ADRESH FA4h — F84h | PORTE®@
FE3h | PLUSW1® FC3h ADRESL FA3h — Fash | PORTD®@
FE2h FSR1H FC2h | ADCONO FAZh IPR2 F82h | PORTC
FE1h FSRIL FCih | ADCON1 FA1h PIR2 F8ih | PORTB
FEOh BSR FCOh — FAOh PIE2 F8oh | PORTA

TimerO

e TimerQO can be used as an 8-bit or as a 16-bit timer
e Thus, two SFRs are used to contain the count:
TMEOL TMREOH TMRECOL
& ™ Or ¢ a Ty 2 ™
DY (DB | DS (D4 [D3 (D2 [DM DIII‘ D& (D14 (D13 (D12 |01 010 D9 (D8 | D7 (D (D5 (D4 (D3 (D2 (D1 (DO
« TOCON Is the control register
« TMROIF is the interrupt flag in the INTCON register
* The clock source for Timer0 may be internal or external
MCLR/Vpp — [
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0 RAO/ANO E
TMROL Timer0 Module Low Byte Register RA1/ 1T <+—[
TMROH | Timer0 Module High Byte Register RA2/AN2/VHEF- <—s]
INTCON GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE RBIE | TMROIF | INTOIF RBIF RAS/AN3/VREF+ “"_"'E
TOCON | TMROON | TO08BIT | ToCS | TOSE | PSA | ToPS2 | ToPS1 | TOPSO RA4/TOCKIl «— []
TRISA — PORTA Data Direction Register RAS/AN4/§£VDIN 4—15

r')r_r\:‘r')r'\ll\hlr‘ —

N o) ¢ e A e

TimerO Control Register
TOCON

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2-0

TOCON: TIMERO CONTROL REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 RW-1 RW-1 RW-1 R/W-1
TMROON | TO8BIT ToCS TOSE PSA | ToPs2 | ToPs1 | ToPsO |
bit 7 bit 0

TMROON: Timer0 On/Off Control bit

1 = Enables Timer0
0 = Stops Timer0

TO8BIT: Timer0 8-bit/16-bit Control bit

1 = Timer0 is configured as an 8-bit timer/counter
0 = Timer0 is configured as a 16-bit timer/counter

TOCS: Timer0 Clock Source Select bit

1 = Transition on TOCKI pin
0 = Internal instruction cycle clock (CLKQO)

TOSE: Timer0 Source Edge Select bit

1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin

PSA: Timer0 Prescaler Assignment bit
1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.

0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.

TOPS2:TOPSO0: TimerO Prescaler Select bits

111 = 1:256 prescale value
110 = 1:128 prescale value
101 = 1:64 prescale value
100 = 1:32 prescale value
011 = 1:16 prescale value
010 =1:8 prescale value
001 =1:4 prescale value
000 =1:2 prescale value

Note that timer
Interrupt enable/flag
bits are in registers
related to interrupts
(e.g., INTCON)

When the timer
overflows, TMROIF
IS set.

16- vs. 8-bit timer

Prescalers are
useful for large time

delays
19

Timer0 8-bit Programming

Select 8-bit mode and prescaler

Load TMROL with preload value (ignore TMROH)
Start timer (TMROON = 1)

Monitor TMROIF (or set interrupt on it)

When TMROIF is set, stop the timer, reset the flag (and if needed go to step 2)

TIMERO BLOCK DIAGRAM IN 8-BIT MODE

1.

2.

3.

4,

5.

FIGURE 10-1:

Port RA4 or Int. Clock Source

Y
Fosc/4

TOSE

Timer vs. Counter

)
RA4/TOCKI pin /]

TOCS

Data Bus

8
e

1
Sync with
Internal
Programmable | | g Clocks
Prescaler
(2 Tcy delay)
$ 3 PSA
ToPS2, ToPS1|ToPSO \
Bypass
Prescaler Prescaler?

Note: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from TOCKI max. prescale.

TMROL

0—-255

Set Interrupt
Flag bit TMROIF
on Overflow

-
Flag Bit 20

Timer0 16-bit Programming

Select 16-bit mode and prescaler
Load TMROH and then TMROL with preload values (load HIGH first!!)

Ex: 18,661 dec = Ox48E5 - TMROH = 0x48 and TMROL = OxXE5

Start timer (TMROON = 1)

M

onitor TMROIF (or set interrupt on it)

When TMROIF is set, stop the timer, reset the flag (and if needed go to step 2)

FIGURE 10-2: TIMERO BLOCK DIAGRAM IN 16-BIT MODE

Port |

RA4 or Int¥CIock Source

Fosc/4————0
& . Y [omu 0 - 65,536
nierna
. D ! Clocks > TMRoL High Byte
TOCKI pin Programmable 0 AN SN
TOSE rescaler (2 Tev delay) ~
3 A 7
TOPS2, TOPS1] TOPSO / M
ToCS PSA
J T8
Bypass e
Prescaler yp TMROH
Prescaler?
e

Note: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from TOCKI max. prescale.

Flag Bit
N\

Set Interrupt

—= Flag bit TMROIF

on Overflow

Read TMROL
Write TMROL

Data Bus<7:0>

21

Timerl

Timerl is 16-bit only

T1CON is the control register

TMR1H

TMR1L

III_.-P'

g

015

014

013 (D12

011 (D10

D3 (Dg [D7 | DB

D4

04 | D3

02

)

]

TMRL1IF is the interrupt flag in the PIR1 register
Prescaler does not support divisions above 1:8

Timerl has 2 external clock sources and 1 regular internal

— Clock fed into T1CK1 pin (RCO)

— Crystal (typically 32-kHz) connected between the T1CKI and T10SI
PINS (RCO&RC1) — for saving power during sleep mode. Timerl is
not shut down allowing use a clock that can be used for waking up

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INTCON | GIE/GIEH |PEIE/GIEL| TMROIE | INTOIE RBIE TMROIF | INTOIF RBIF
PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF | CCP1IF | TMR2IF | TMR1IF
PIE1 PSPIE(ADIE RCIE TXIE SSPIE | CCP1IE | TMR2IE | TMR1IE
IPR1 PsPIP() ADIP RCIP TXIP SSPIP | CCP1IP | TMR2IP | TMR1IP
TMR1L |Holding Register for the Least Significant Byte of the 16-bit TMR1 Register
TMR1H |Holding Register for the Most Significant Byte of the 16-bit TMR1 Register
T1CON RD16 — T1CKPS1 ‘ T1CKPS0 ‘ T1OSCEN | TISYNC | TMR1CS | TMR10ON

22

_ Timerl Control Register
o T1CON

R 11-1: T1CON: TIMER1 CONTROL REGISTER

e 16-bit mode only
RW-0 U0 R/W-0 R/W-0 R/W-0 RW-0 RW-0 RW-0 1 It moade on
RD16 — | TICKPS1 | TICKPSO | TIOSCEN | TTSYNC | TMRI1CS | TMRION |

bit 7 o o Smaller prescaler range
o ?[=)1Esr:\;:I;absitr:geizs;{rvlgii;rmi::ﬁeE;a:ilri::: in one 16-bit operation ¢ TI m e rl Can be u Se d aS

0 = Enables register Read/Write of Timer1 in two 8-bit operations

bit 6 Unimplemented: Read as '0 1 . tl mer
bit 5-4 T1CKPS1:T1CKPSO0: Timer1 Input Clock Prescale Select bits
11 = 1:8 Prescale value 2. synchronous counter

10 = 1:4 Prescale value

00111 Prescle valis (TISYNC)
asynchronous counter

bit 3 T10SCEN: Timer1 Oscillator Enable bit 3
1 = Timer1 Oscillator is enabled .
0 = Timer1 Oscillator is shut-off
The oscillator inverter and feedback resistor are turned off to eliminate power drain.
bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select bit
When TMR1CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input
When TMR1CS = 0:
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1 TMR1CS: Timer1 Clock Source Select bit
1 = External clock from pin RCO/T10SO/T13CKI (on the rising edge)
0 = Internal clock (Fosc/4)
bit 0 TMR10ON: Timer1 On bit
1 = Enables Timer1
0 = Stops Timer1 23

#4 Timerl Block Diagram

Used with

FIGURE 11-1: TIMER1 BLOCK DIAGRAM k/ CCP option

TMR1IF

CCP Special Event Trigger
Overflow TMR1 Synchronized
Interrupt Of=
Flag Bit CLR - Clock Input
TMR1H TMR1L {

a gy
TMR10ON

o On/Off T1SYNC
"T10SC | S 1
T1CKI[T10S0O | T10SCEN & Proscaler Synchronize
T108I |Enable " Fosc/a (1,248 ["] Adet [
External ___ oscllaor™ Intemal—] 0 |
Clock ’T’ 2 SLEEP Input

Clock Timer 1 crystal, e.g., T1CKPS1:T1CKPS0
Signal In

32KHz for sleep mode TMR1CS

Note 1: When enable bit TIOSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain

Lol AN L BT RAD - | |
RCOM10SOM13CKI «—w[] 15
RCUTI0SHCCP2Y o 15

24

Timer2

Timer2 is an 8-bit only
T2CON is the control register
TMR2IF is the interrupt flag in the PIR1 register

Timer2 has a period register PR2; Timer2 can be set to

TMR2 I
AN
"-\.\\I
D7 | Db | D5 | D4 | D3 (D2 (D1 | DO

count only to PR2 and set TMR2IF then

Clock source is only Fosc/4 (Timer2 cannot be a counter)

Has both a prescaler and a postscaler

Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INTCON | GIE/GIEH | PEIE/GIEL | TMROIE INTOIE RBIE TMROIF | INTOIF RBIF
PIR1 PSPIF(™ ADIF RCIF TXIF SSPIF | CCP1IF | TMR2IF | TMR1IF
PIE1 PSPIE() ADIE RCIE TXIE SSPIE | CCP1IE | TMR2IE | TMR1IE
IPR1 pspIp(™) ADIP RCIP TXIP SSPIP | CCP1IP | TMR2IP | TMR1IP
TMR2 |Timer2 Module Register
T2CON — TOUTPS3 | TOUTPS2 | TOUTPS1 | TOUTPSO0 | TMR20ON | T2CKPS1 | T2CKPS0
PR2 Timer2 Period Register

25

Timer2 Control Register
o T2CON

REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— TOUTPS3 | TOUTPS2 | TOUTPS1 | TOUTPSO | TMR20ON | T2CKPS1 | T2CKPS0
bit 7 bit O
bit 7 Unimplemented: Read as '0'

bit 6-3 TOUTPS3:TOUTPSO: Timer2 Output Postscale Select bits

0000 = 1:1 Postscale
0001 = 1:2 Postscale

1111 = 1:16 Posiscale

bit 2 TMR2ON: Timer2 On bit
1 =Timer2 is on
0 = Timer2 is off
bit 1-0 T2CKPS1:T2CKPSO0: Timer2 Clock Prescale Select bits

00 = Prescaleris 1
01 = Prescaleris 4
1x = Prescaleris 16

26

CSE@UTA

Timer2 Block Diagram

FIGURE 12-1: TIMER2 BLOCK DIAGRAM
Sets Flag
Outpud® bit TMR2IF
]
Prescaler RESET
Fosc/a 1:1,1:4, 1:16 Trj? -
/P) Comparator Postscaler
EQ | 1:1to1:16
T2CKPS1:T2CKPSO0 4}
PR2 4
TOUTPS3:TOUTPSO

Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock.

PR2:

[

___—~ FLAG=1

27

Timer3

TMR3H TMR3L

Timer3 Is 16-bit only - v .
T3CON iS the Contr0| regiSter D15 (D14 (D13 |D12|D11|D10| D9 | D8 | D7 | D6 | D& | D4 | D3 | D2 | D1 | DO

TMR3IF is the interrupt flag in the PIR2 register
Can work with CCP peripheral (later)

Timer3 has 2 external clock sources and 1 regular internal
— Same external source(s) as timerl

Can be used as timer, ascynchronous, or synchronous counter

Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INTCON GIE/ PEIE/ TMROIE | INTOIE RBIE TMROIF | INTOIF RBIF

GIEH GIEL
PIR2 — — — EEIF BCLIF LVDIF | TMR3IF | CCP2IF
PIE2 — — — EEIE BCLIE LVDIE | TMR3IE | CCP2IE
IPR2 — — — EEIP BCLIP LVDIP | TMR3IP | CCP2IP

TMR3L |Holding Register for the Least Significant Byte of the 16-bit TMR3 Register
TMR3H |Holding Register for the Most Significant Byte of the 16-bit TMIR3 Register
T1CON RD16 — T1CKPS1 | TICKPSO0 | TIOSCEN | TISYNC | TMR1CS | TMR1ON 28

T3CON RD16 | T3CCP2 | T3CKPS1 | T3SCKPS0| T3CCP1 | T3SYNC | TMR3CS | TMR3ON

Timer3 Block Diagram

FIGURE 13-1: TIMER3 BLOCK DIAGRAM

TMR3IF
Overflow
Interrupt

Flag bit

|

T1080/
T13CKiI

—CCP Special Trigger
L T3CCPx
0l ¢ Synchronized
CLR . Clock Input

T10SI

TMR3H TMR3L

} 1| ——

TMR30ON

On/Off T3SYNC
. T108C | 3
. . 2 1
! ! 2 Synchronize
| | | Prescaler . a
: —T10SCEN Fosc/a 1,2,4,8 A det
! . Enable 1) Internal— 0
: ' Oscillator’’ Clock 2

TMR3CS SLEEP Input

T3CKPS1:T3CKPSO

Note 1: When enable bit TIOSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

W] L VT PSE————
RCOT10SOIM13CK] «—u[]
RCcUTi10SICCP2M)

29

CSE@UTA

Timer3 Control Register

T3CON

113-1:

bit 7

bit 6-3

bit 5-4

bit 2

bit 1

bit 0

T3CON: TIMER3 CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RD16 | T3CCP2 | TSCKPS1 | TSCKPSO | T3CCP1 | T3SYNC | TMR3CS | TMR3ON

bit 7 bit 0

RD16: 16-bit Read/Write Mode Enable bit

1 = Enables register Read/Write of Timer3 in one 16-bit operation
0 = Enables register Read/Write of Timer3 in two 8-bit operations
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits

1x =Timer3 is the clock source for compare/capture CCP modules

01 =Timer3 is the clock source for compare/capture of CCP2,
Timer1 is the clock source for compare/capture of CCP1

00 =Timer1 is the clock source for compare/capture CCP modules

T3CKPS1:T3CKPSO0: Timer3 Input Clock Prescale Select bits

11 = 1:8 Prescale value

10 = 1:4 Prescale value

01 = 1:2 Prescale value

00 = 1:1 Prescale value

T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the system clock comes from Timer1/Timer3)

When TMR3CS = 1:

1 = Do not synchronize external clock input

0 = Synchronize external clock input

When TMR3CS = 0:

This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
TMR3CS: Timer3 Clock Source Select bit

1 = External clock input from Timer1 oscillator or T1CKI
(on the rising edge after the first falling edge)
0 = Internal clock (Fosc/4)
TMR3ON: Timer3 On bit 30

1 = Enables Timer3
0 = Stops Timer3

TimerO Interrupt Example

CSE@UTA

1.

In TOCON...

1. Select 16-bit mode

2. Selectinternal or external clock source
3. Allow prescaler option if desired

4. Select desired prescaler

Load TMROH and TMROL with preloads (load HIGH first!!)
— Ex: 18,661 dec = 0x48E5 > TMROH = 0x48 and TMROL = OxE5

In INTCON...

1. Enable the TMROIE interrupt bit
2. Enable the PEIE peripheral interrupt bit
3. Enable the GIE global interrupt bit

Start timer (TOCONbits. TMROON = 1)

Monitor TMROIF (if only polling)

When overflow occurs (1.2s has passed) TMROIF is setto 1
In the ISR...

1. Identify the interrupt source

2. Stop the timer (disable TimerO0) 31

3. Reset the flag (if needed go to step 2 of writing preload values)

A Using PIC18 Timers for CCP
== (Capture, Compare, and PWM)

* Timer0 is usually just for generic timing

 Timers 1 and 3 can be used for capture and
compare features

— T3CON Is used to chose the timer for CCP

e Timer2 is used for PWM

— Note: These rules do not always apply, have to
check the specific PIC18 datasheet

32

Using PIC18 Timers for CCP
(Capture, Compare, and PWM)

33

CCP

« Compare (input)
— Count outside events (incoming to the PIC’s pins)
— When X have occurred - do something

o Capture (input)

— Measure an unknown signal’s frequency (period) or
PWM Duty Cycle

« PWM (output)
— Send a precise signal out of the PIC

34

PWM Basics
=n (Pulse Width Modulation)

Digital signals have two distinct levels: high and low

These levels are usually represented by a voltage
— e.g., In PIC low is OV and high is VCC (5V)

A temporal digital signal changes with time from low
to high and back

Thus we can describe temporal digital signals with a
series of values representing the time for which
they stay in one state

Periodic temporal digital signals have a distinct
frequency

— the inverse of the time between two consecutive rising
edges 35

PWM Basics (cont’d)

If t, + t, remain constant - frequency remains constant

+t1 —-

-+t —m

Such periodic signals can still have varying times they spend
In high vs. low state

PWM Duty Cycle is the portion of the pulse that stays HIGH

relative to the entire period
5% DC SN 1 n |

0% DC 1 b b b g b
mwDc 41 U U W U U u
100% DC 36

b

041 =
DC[%] = 100 * i

PWM Basics (cont’d)

CSE@UTA

Pulse Width Modulation Duty Cycles

0% : 25% ; 50% : 75% : 100%
Duty Cycle : DutyCycle : DutyCycle : DutyCycle : DutyCycle

. — € > € >,
; 5 : ' | Average Voltage
S Average Volllage :
o 1 1 FEEEERETE Ase_
=10)
s I 5 L DClEeL TPes
>
o
>

0 Average Voltage - :
0 2 4 6 8
Time (ms)

Note: 1 cycle =2ms @ 500 Hz
Source: http://Iwww.hho4free.com/pulse width modulator pwm.html

37

http://www.hho4free.com/pulse_width_modulator__pwm.html

PWM Basics (cont’d)

CSE@UTA

 There are various sensors that provide their output as PWM
signals, where the DC corresponds to the reading

 There are various actuators that work well with a PWM input

28%0Cc JL I J1 I I 1
50%0C LMLy — R
mwwoc I U U U uUu O AVAVAY. o
100% DC d Square Wave Input Signal C T
. . — Vout
e An appropriate RC filter (Integrator) L] \] l
O

can make an analog signal out

of a PWM digital signal _|__|_|_ AL\ A

Vour at Low Voo 8t Medium Vot at High

O—

PWM Analog Frequencies Frequencies Frequencies
C— Source: http://www.electronics-tutorials.ws/
o 38

http://www.electronics-tutorials.ws/

PIC18's CCP Modules

PIC18s have 0 — 5 CCP modules on-board (CCPx) with 3 modes

Capture
— can use an external input to copy timer values into a 16-bit register
— provides the capability of measuring the period of a pulse

Compare
— enables the counter value of timers to be compared to a 16-bit register
— if equal, then perform an action

PWM

— can be used as a quasi-analog output (timed digital output with duty
cycle setting)

These are great for driving motors, reading encoders, IR comm.

For DC motor control some of the CCPs have been enhanced
and are called ECCP

The PIC18F452 has 2 CCP Modules: CCP1 & CCP2
— can be used at the same time but only 1 mode per CCP at atime 39

CSE@UTA

~Timers and CCP Association

TABLE 14-1:

CCP MODE - TIMER

RESOURCE

CCP Mode

Timer Resource

Capture
Compare

PWM

Timer1 or Timer3
Timer1 or Timer3
Timer2

T3CON: TIMER3 CONTROL REGISTER

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RD16 | T3CCP2 | T3CKPS1 | T3CKPS0O | T3CCP1 | T3SYNC | TMR3CS | TMR3ON
bit 7 bit 0
These rules do not always apply — have to check the specific PIC18 datasheet 40

cseayra REGISTER 13-1:

bit 7

T3CON

T3CON: TIMER3 CONTROL REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

RD16 | T3CCP2 ‘TSCKPS1 ‘ T3CKPSO ‘ T3CCP1 | T3SYNC | TMR3CS | TMR3ON

bit 7 bit 0

RD16: 16-bit Read/Write Mode Enable bit

1 = Enables register Read/Write of Timer3 in one 16-bit operation
0 = Enables register Read/Write of Timer3 in two 8-bit operations

bit 6-3

T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits

1x =Timer3 is the clock source for compare/capture CCP modules

01 =Timer3 is the clock source for compare/capture of CCP2,
Timer1 is the clock source for compare/capture of CCP1

00 =Timer1 is the clock source for compare/capture CCP modules

bit 5-4

bit 2

bit 1

bit O

T3CKPS1:T3CKPSO0: Timer3 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value

T3SYNC: Timer3 External Clock Input Synchronization Control bit
(Not usable if the system clock comes from Timer1/Timer3)

When TMR3CS = 1.

1 = Do not synchronize external clock input

0 = Synchronize external clock input

When TMR3CS = 0:

This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.
TMR3CS: Timer3 Clock Source Select bit

1 = External clock input from Timer1 oscillator or T1CKI
(on the rising edge after the first falling edge)
0 = Internal clock (Fosc/4)
TMR3ON: Timer3 On bit 41

1 = Enables Timer3
0 = Stops Timer3

CCPx PiIns

[| «<— RB7/PGD

[] «—— RB6/PGC

[] «—— RB5/PGM
<-— RB4

MCLR/Vpp —[] 1 _/ 40
RAO/ANO -—[]2 39

RA1/AN1 <—[]3 38
RA2/AN2/VREF- <—] 4 37
RAS/ANS/VREF+ «—[]5 36
RA4/TOCKI «— []6 35
RA5/AN4/SS/LVDIN <+—=[]7 34
REORD/ANS —8 & @ 33
REIWR/AN6 =—[o §F T
RE2/CS/AN7 -—=[]10 @ @ 31

VDD —— [] 11 6 6 30

Vss —=[12 §F 7 29

OSC1/CLKI —=] 13 o8
OSC2/CLKO/RA6 <«——[] 14 57
RCO/T10SO/T1CKI <—=1 15 o6
RC1/T10SI/CCP2* =[] 16—‘ o5
RC2/CCP1 <—s[] 17 o4
RC3/SCK/SCL <—[] 18 23
RDO/PSP0 «—— [] 19 29
RD1/PSP1 <—s[] 20 21

<«— RB3/CCP2*
] «— RB2/INT2
|] «— RB1/INT1
] «— RBO/INTO
[| «—— VDD
] «——VsS
| «<— RD7/PSP7

] <—— RD6/PSP6
] <—» RD5/PSP5

] < RD4/PSP4
] «<— RC7/RX/DT
] < RC6/TX/CK
] <—— RC5/SDO

[] «— RC4/SDI/SDA
] «— RD3/PSP3

42

| | «— RD2/PSP2

CCP Module Basics

« Each CCP module has 3 associated registers

— CCPxCON controlling the modes

— CCPxL and CCPxH as a 16-hit

compare/capture/PWM duty cycle register

|

CCPRI1H

CCPRIL

D15

D14 |D13

D12

DIl

D10| D9

D8][m

D6ID5

D4

D3

D2ID1

DO

e Each CCP module
it (Input or output)

RC1/T10SI/CCP2* <= [] 16
RC2/CCP1 <[] 17

nas a pin associated with

| 36

< RB3/CCP27 |

_ CCP 1 & 2 Module Control
e CCPxCON

REGISTER 14-1: CCP1CON REGISTER/CCP2CON REGISTER

u-0 u-o0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
= = DCxB1 DCxBO | CCPxM3 | CCPxM2 | CCPxM1 | CCPxMO
bit 7 bit 0

bit 7-6 Unimplemented: Read as '0'
bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0

Capture mode:
Unused

Compare mode:

Unused

PWM mode:

These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits
(DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxMO0: CCPx Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)
0001 = Reserved
0010 = Compare mode, toggle output on match (CCPxIF bit is set)
0011 = Reserved
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
prescalers . 0110 = Capture mode, every 4th rising edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode,
Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)
1001 = Compare mode,
Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)
1010 = Compare mode,
Generate software interrupt on compare match (CCPIF bit is set, CCP pin is unaffected)
1011 = Compare mode,
Trigger special event (CCPIF bit is set)
1ixx = PWM mode

44

Relevant Registers

TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bito | _alueon :ﬁlghoeﬁ
POR,BOR | peseTs
INTCON |GIE/GIEH |PEIE/GIEL| TMROIE | INTOIE RBIE TMROIF | INTOIF RBIF | 0000 000x | 0000 000u
PIR1 PSPIF() ADIF RCIF TXIF SSPIF CCP1IF | TMR2IF | TMR1IF | cooo 0000 | 0000 0000
PIEA PSPIE(™ ADIE RCIE TXIE SSPIE CCP1IE | TMR2IE | TMR1IE | 0000 0000 | 0000 0000
IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP | TMR2IP | TMR1IP | ooo0 0000 | 0000 0000
TRISC PORTC Data Direction Register 1111 1111 (1111 1111
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register XXXX XKXXX | Uuuu uuuu
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register XXXX XXXX | uuuu uuuu
T1CON RD16 — T1CKPS1 | TICKPSO0 | TIOSCEN | TISYNC | TMR1CS | TMR1ON | 0-00 0000 | u-uu uuuu
CCPR1L |Capture/Compare/PWM Register1 (LSB) XXXX XKXXX | Uuuu uuuu
CCPR1H |Capture/Compare/PWM Register1 (MSB) XXXX XKXXX | Uuuu uuuu
CCP1CON — — DC1B1 | DC1BO ‘ CCP1M3 | CCP1M2 | CCP1M1 | CCP1MO | --00 0000 | --00 0000
CCPR2L |Capture/Compare/PWM Register2 (LSB) XXXX XXXX | Uuuu uuuu
CCPR2H |Capture/Compare/PWM Register2 (MSB) ¥XXX XKXXX | UUUU uuuu
CCP2CON — — DC2B1 DC2B0 | CCP2M3 | CCP2M2 | CCP2M1 | CCP2MOQ | --00 0000 | --00 0000
PIR2 — — — EEIE BCLIF LVDIF | TMR3IF | CCP2IF | ---0 0000 |---0 0000
PIE2 — — — EEIF BCLIE LVDIE | TMR3IE | CCP2IE | ---0 0000 |---0 0000
IPR2 — — — EEIP BCLIP LVDIP | TMR3IP | CCP2IP | ---1 1111 |---1 1111
TMR3L Holding Register for the Least Significant Byte of the 16-bit TMR3 Register XXXX XXXX | Uuuu uuuu
TMR3H Holding Register for the Most Significant Byte of the 16-bit TMR3 Register XHHH XHXXK | uuuy uude
T3CON RD16 | T3CCP2 | T3CKPS1 | T3CKPS0| T3CCP1 | T3SYNC | TMR3CS | TMR3ON | 0000 0000 | uuuu uuuu

Compare Mode

~ |F(CCP == TMR1/3) THEN...
« The CCPRxH:CCPRXL is loaded by the user

e If Timerl TMR1H:TMRI1L (or Timer3 — T3CON)
count becomes equal to the above set value then
the Compare module can:

1.

ok W

Drive the CCPx pin high (CCPx config’d as out)
Drive the CCPx pin low (CCPx config’d as out)
Toggle the CCPx pin (CCPx config’'d as out)
Trigger a CCPxIF interrupt and clear the timer
CCP2 can be used to kick off the A/D converter

46

Compare Mode

CSE@UTA

PIC18F452
Set HIGH or LOW
Toggle
ADC GO
Int Flag

Wﬂ—h TMR4++ / YES?

1

If ==| CCPH:L

47

~Compare Mode Programming

Set up CCP interrupt if needed

nitialize CCPxCON for compare

Pick timer source (T3CON)

nitialize the CCPRxH:CCPRXxL 16-bit value

Make sure CCPx pin is output if used
— setting appropriate TRISDbits

Initialize Timerl (or Timer3)
Start Timerl (or Timer3)
Poll CCPxIF flag or make sure interrupt is handled

48

Capture Mode

The CCPx pin is set as input (set TRISDits)

When an external event triggers the CCPx pin, then
the TMR1H: TMR1L (or Timer3) values will be loaded
Into CCPRxH:CCPRXL

Four options for CCPx pin triggering:

— Every falling edge MMMMM

— Every rising edge BRI I A B O A A A

— Every 4t rising edge ,

— Every 16" rising edge |_

Typical applications are measuring frequency or
pulsewidth 49

Capture Mode Programming for

Frequency Measurement

Initialize CCPxCON for capture

Make CCPx pin an input pin (TRISB/TRISC)

Pick timer source (T3CON)

On first rising edge, Timerl/3 is loaded into CCPRxH:CCPRXL

— remember values

On next rising edge, Timerl/3 is loaded into CCPRxH:CCPRXL
— subtract previous values from current values

You have now the period of the signal captured by timer ticks.

Some basic math will give you frequency
JUU LTI LT L

-d—t.1 —f~-

50

-+ —-

A Capture Mode Programming for
Frequency Measurement

PIC18F452

I—MWMHMM

TMR++ A: TE/IR B: Ti\/IR
A // CCPH:L CCPH:L
CCPx 1 full period

(time)

Capture Mode Programming for

T Measuring PWM Duty Cycle

Initialize CCPxCON for capture

Make CCPx pin an input pin (TRISB/TRISC)

Pick timer source (T3CON)

On rising edge, Timer is started & mode set to falling edge

On falling edge the CCPRxH:CCPRXL should be saved, CCP
should be set to rising edge

On rising edge CCPRxH:CCPRXL is saved

— Now we have measurements for t, and t,
DC can be calculated while new measurement is prepared

TTUU UL

RIS,

52

-+t —m

A Capture Mode Programming for
= Measuring PWM Duty Cycle

PIC18F452

TMR++ A: TMR B: TMR C.TMR

A B // CCPH:L CCPH:L CCPH:L
\ HIGH time }

CCPx Y

1 full period
(time)

53

A Capture Mode Programming for
= Measuring PWM Duty Cycle

PIC18F452

l—ﬂMHTMﬂIWIUl

TMR++ A: Ti/lR B: TMR C:TMR
A B // CCPH:L CCPH:L CCPH:L
\ HIGH time }
CCPx Y
Dc =274 1 full period

C—-A4 (time)

54

PWM Mode
(Generate Precise Output)

ewmDC LAt nfinniminl
50% DC UL

mswDc FUryrrururrrrrrorrryrutd
100% D J

D JLJJL I JT J1 J1 111111
1 O N I A Iy I O A N e B
mwboc 4 U d U U ud o o o ou
100% DoC |

2w oc I I'1 I'1 I'1 I'1 I'1 I
s0wDCc I L1 LI LI LI LI L1
75w DC LI LI L LI LI

100% DC o5

PWM Mode

PWM output can be created without tedious
programming of the compare mode or timers

ECCP’s PWM mode enables generating temporal
digital signals of varying frequencies and varying DC

— recall: width of the pulse indicates some measured quantity
Recall, that the PWM Duty Cycle is the portion of the

pulse at HIGH relative to the entire period

For PWM, Timer2 is used

Recall, that Timer 2 has a period register PR2

+t1 — -

- b —-

CSE@UTA

Timer2 Block Diagram

FIGURE 12-1: TIMER2 BLOCK DIAGRAM
Sets Flag
Outpud® bit TMR2IF
]
Prescaler RESET
Fosc/a 1:1,1:4, 1:16 Trj? -
/P) Comparator Postscaler
EQ | 1:1to1:16
T2CKPS1:T2CKPSO0 4}
PR2 4
TOUTPS3:TOUTPSO

Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock.

PR2:
0-255

[

___—~ FLAG=1

57

CSE@UTA

PWM
Specify Two Things

Unit of time _2

(ms, us, etc.)

14.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2
register. The PWM period can be calculated using the
following formula:

PWM period = (PR2)+ 1]+ 4« Tosc e
e (TMR2 prescale value)

Unit of time
(ms, us, etc.)

14.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the
CCPR1L register and to the CCP1CON<5:4> bits. Up
to 10-bit resolution is available. The CCPR1L contains
the eight MSbs and the CCP1CON<5:4> contains the
two LSbs. This 10-bit value is represented by
CCPR1L:CCP1CON<5:4>. The following equation is
used to calculate the PWM duty cycle in time:

T PWM duty cycle = (CCPRIL:CCPICON=<5:4=)+
Tosc » (TMR2 prescale value)

58

n PWM Mode
=n Desired Period and Frequency

= desired PWM period (time, secs/cycle)

Fowm = desired PWM freq. (rate, cycles/sec)
e Toum=1/F

pwm pwm

PR2: 0 — 255 (from TMR2)
TOSC = 1 / I:OSC

p

Towm = #*N*(PR2+1) / F . or....
owm — A*N*(PR2+1) * T ..
—where N Is the prescaler of TMR2 (1, 4, 16) *°

PWM Mode
=~ Desired Period and Frequency

e Fastest Rate
— Min Tme = 4*1*(0+1) * Tosc =4 Tosc
— I\/IaX prm =1 / prm = |:OSC/ 4
iR R RhR LR

e Slowest Rate
—Max Tp,m = 4*¥16%(255+1) * Ty, = 16,384 T,
—Min F,n=1/T,,m=Fus /16,384
I L L r L r L r L r i

60

PWM Mode EX.
Desired Period and Frequency

Find the PR2 value and the prescaler needed to get the following PWM frequencies.
Assume XTAL = 20 MHz.
(a) 1.22 kHz, (b) 4.88 kHz, (c) 78.125 kHz

Selution:

(a) PR2 value = [(20 MHz / (4 x 1.22 kHz)] - 1 = 4,097, which is larger than 255, the
maximum value allowed for the PR2. Now choosing the prescaler of 16 we get
PR2 value=[(20 MHz /(4 x 1.22 kHz x 16)] — 1 = 255

(b) PR2 value = [(20 MHz / (4 x 4.88 kHz)] - 1 = 1,023, which is larger than 255, the
maximum value allowed for the PR2. Now choosing the prescaler of 4 we get
PR2 value = [(20 MHz / (4 X 4.88 kHz x 4)] — 1 = 255

(c) PR2 value = [(20 MHz / (4 x 78.125 kHz)] — 1 = 63
61

PWM Mode EX.
Desired Period and Frequency

Find the minimum and maximum Fpwm frequency allowed for XTAL = 10 MHz. State
the PR2 and prescaler values for the minimum and maximum Fpwm.

Solution:

We get the minimum Fpwm by making PR2 = 255 and prescaler = 16, which gives us
10 MHz/ (4 x 16 x 256) = 610 Hz.

We get the maximum Fpwm by making PR2 = 1 and prescaler = 1, which gives us 10
MHz /(4 x1x1)=2.5 MHz.

62

PWM Period and Duty Cycle

0SC

Timer2
PR2

PWM
Period

CCPRXL
CCPxCON

PWM
Duty Cycle

63

PWM Period and Duty Cycle

0SC

Timer2
PR2

CCPRXL
CCPxCON

PWM

Duty Cycle

64

PWM Period and Duty Cycle

0SC Timer2 I PWM
4 PR2 I Period |

— CCPRXxL — PWM l!!..lll“‘;;;===:::

0scC CCPxCON Duty Cycle

PWM Period and Duty Cycle

Fosc | Timer2 |_1I PwWM :
4 PR2 I Period | I
""" |
i
= CCPRxL , PWM I
0scC CCPxCON Duty Cycle

66

PWM Period and Duty Cycle

0SC

Timer2
PR2

CCPRXL
CCPxCON

PWM

Duty Cycle

67

PWM Period and Duty Cycle

0SC

Timer2
PR2

CCPRXL
CCPxCON

1 PWM :
I Period |
""" |
PWM l
Duty Cycle

68

PWM Period and Duty Cycle

0SC

Timer2
PR2

CCPRXL
CCPxCON

1 PWM :
I Period |
""" |
PWM l
Duty Cycle

69

PWM Period and Duty Cycle

0SC oy Timer2 — PWM :
A PR2 | Period | I
""" | |
| N
— CCPRxL — PWM | . N, :
0sC CCPxCON Duty Cycle

70

CSEGUTA

PWM Mode
Desired Duty Cycle

 PIC18F452 has “10-bit” duty cycle resolution
— Remember, DC is just a percentage of the period

EX FIGURE 14-4: PWM OUTPUT
Period
— DC[%] = 75% = .75 aE—
N D ——
- TPWM — .4mS ! Duty Cycle i I
—_ —_ TMR2 = PR2
TDC _ (.75)(.4mS) o .3mS Tlv‘iFlE:DutyCycle
TMR2 = PR2
Bit9 | Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit 2 Bit 1 Bit O
CCPxCON | CCPxCON
""""""""""""""""" COPRXLo-mmememm oo DCxB1 DCxBO
CCPR1L GapturefCﬁmparefPWH HegisteHI{LSB] | |
CCP1CON — — DC1BA1 DC1BO CCP1M3 | CCP1M2 | CCP1M1 CGP“JHO

PWM Example

e Knowns e Unknowns to Calculate

— Fosc — PR2 register value
— Fowm e To set Tpyyw (PWM period)
— DC(%) — CCPR1L:CCP1CON<5:4>

e So we also know

register value
* To set Ty (Duty Cycle period)

OSC

PWM

DC
72

PWM Example

CSE@UTA

e Fooe = 10 MHZ * Note

) - PR2 (8-bit): 0-255
Fepwm = 2.5 KHZ CCPR... (10-bit): 0-1023
 DC(%) = 75%

PWM period = (PR2)+1]+*4+«TosC*
(TMR2 prescale value)

Calculate /

these values

\

PWM duty cycle = (CCPRIL:CCPICON<5:4>)
Tosc * (TMR.2 prescale value)

73

PWM Mode - Programming

N =

S -l

Set PWM period by setting PR2 and T2CON (prescaler)

Set PWM duty cycle by calculating and writing top 8 bits
to CCPRxL and the remainder 2 to CCPxCON<5:4> bits

Set the CCPx as output (TRIS)
Clear TMR2

Set CCPx to PWM mode

Start Timer 2

CCPx output pin will constantly keep outputting your signal
at the set period and DC until you turn it off/disable it

ewmDC LA nntnnnnnnfinnimnl
50% DC U
mwDe FUUrrrrrrrrrrrrrriy

100% DC J 24

CSEGUTA

Standard Half-Bridge Circuit (“Push-Pull™)

PIC18F4X2X

P1A S

P1B ™~

Half-Bridge Output Driving a Full-Bridge Circuit

|{+

PIC18F4X2X

P1A ™~

FET
Driver

I ~ 1

I ~

P1B ™

FET
Driver

75

CSE@UTA

> - DC Motor Drive Full H Bridge

PIC18F4X2X FET QA Qc FET
Driver - Driver
™ e | |

P1A P & = id ~
. (o}
FET FET
Driver Driver
L~ G =x TR
P1C OB QD
A
F1D —

76

Rotary Encoders

CSE@UTA

Rotary encoders are rotational sensors (one component of servos), they
can provide precise readings (PWM) of shafts turning (flow valves, etc.)

Internally they can be mechanical, magnetic (induction) based or optical
Optical encoders are usually of high precision, contain encoder wheels
Encoders can be absolute or incremental

They can be read using timers but will tie up microcontroller; there are
special purpose circuitry to read them, which have parallel or serial
interfaces to microcontrollers

CCP Questions?

e Lab 7 will be detailed and given out soon
— Take-home lab/project
— Explained in lab and class

 Remaining Lectures...

— Hardware Connections (ICSP, .hex details, etc.)
— Communication (MSSP, SPI, USART, 12C, etc.)

78

	Lecture 12�Timers and CCP�(Capture/Compare/PWM)
	PIC18 Timer Peripherals
	PIC Timers
	Timer
	Timer
	Counter
	Timer Length (Width or Mode)�and Preload
	Timer Overflow
	Prescaler
	Ex: F/4
	How to Calculate Example�(Want 1.2 sec Delay)
	How to Calculate Example�(Want 1.2 sec Delay)
	How to Calculate Example�(Want 1.2 sec Delay)
	How to Calculate Example�(Want 1.2 sec Delay)
	Four PIC18F452 Timers
	SFRs are Used to “Control” the Timer Peripherals
	Slide Number 17
	Timer0
	Timer0 Control Register�T0CON
	Timer0 8-bit Programming
	Timer0 16-bit Programming
	Timer1
	Timer1 Control Register� T1CON
	Timer1 Block Diagram
	Timer2
	Timer2 Control Register� T2CON
	Timer2 Block Diagram
	Timer3
	Timer3 Block Diagram
	Timer3 Control Register� T3CON
	Timer0 Interrupt Example
	Using PIC18 Timers for CCP�(Capture, Compare, and PWM)
	Using PIC18 Timers for CCP�(Capture, Compare, and PWM)
	CCP
	PWM Basics�(Pulse Width Modulation)
	PWM Basics (cont’d)
	PWM Basics (cont’d)
	PWM Basics (cont’d)
	PIC18’s CCP Modules
	Timers and CCP Association
	T3CON
	CCPx Pins
	CCP Module Basics
	CCP 1 & 2 Module Control�CCPxCON
	Relevant Registers
	Compare Mode
	Compare Mode
	Compare Mode Programming
	Capture Mode
	Capture Mode Programming for Frequency Measurement
	Capture Mode Programming for Frequency Measurement
	Capture Mode Programming for Measuring PWM Duty Cycle
	Capture Mode Programming for Measuring PWM Duty Cycle
	Capture Mode Programming for Measuring PWM Duty Cycle
	PWM Mode�(Generate Precise Output)
	PWM Mode
	Timer2 Block Diagram
	PWM�Specify Two Things
	PWM Mode�Desired Period and Frequency
	PWM Mode�Desired Period and Frequency
	PWM Mode Ex.�Desired Period and Frequency
	PWM Mode Ex.�Desired Period and Frequency
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Period and Duty Cycle
	PWM Mode�Desired Duty Cycle
	PWM Example
	PWM Example
	PWM Mode - Programming
	DC Motor Drive Half bridge
	DC Motor Drive Full H Bridge
	Rotary Encoders
	CCP Questions?

