#### The University of Texas at Arlington

# Lecture 12 Timers and CCP

#### (Capture/Compare/PWM)





#### CSE 3442/5442 Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker



### **PIC18 Timer Peripherals**





# **PIC Timers**

- PIC18 family microcontrollers have 2 to 5 timers on-board
- Timers can be used to generate time delays or to count (outside) events happening "in the background"
- Some timers can also be used to control the timing of other peripherals (some automatically like ADC)
- Every timer needs a clock that will make it to count
- Timers have the option to use at most ¼ of the main clock's frequency Fosc or use a separate external signal for clocking
  - Timer: uses internal clock source ( $F_{osc}$  /4)
    - "Wait this amount of fixed time" or
    - "Let me know when X sec/ms/us/etc. have elapsed"
  - **Counter**: fed pulses through one of the PIC's pins
    - "Count how many events/pulses occur on a pin"





• Software specified time delay or "background" time elapsed

| - |    |                       |        |  |
|---|----|-----------------------|--------|--|
|   | 1  |                       | 40     |  |
|   | 2  | main()                | 39 🗋   |  |
|   | З  | ſ                     | 38 🔟 👘 |  |
|   | 4  |                       | 37 🔲   |  |
|   | 5  | Setup Timer           | 36 🗖   |  |
|   | 6  | Start Timer           | 35 🗖   |  |
|   | 7  |                       | 34 🗖   |  |
|   | 8  | //dolov/X/mc/coc/oto  | 33 🗖   |  |
|   | 9  | //delay x ms/sec/etc. | 32 🗖   |  |
|   | 10 | while(timerNotDone);  | 31 🗖   |  |
|   | 11 |                       | зо 🗖   |  |
|   | 12 | continue              | 29 🗖   |  |
|   | 13 | 1                     | 28 🔲   |  |
|   | 14 | 3                     | 27 🗋   |  |
|   | 15 |                       | 26 🗖   |  |
|   | 16 |                       | 25 🗖   |  |
|   | 17 |                       | 24 🔲   |  |
|   | 18 |                       | 23 🗖   |  |
|   | 19 |                       | 22 🗖   |  |
|   | 20 |                       | 21     |  |





• Software specified time delay or "background" time elapsed

| - |    |                      |        |          |
|---|----|----------------------|--------|----------|
|   | 1  |                      | 40     |          |
|   | 2  | main()               | 39 🗖   |          |
|   | З  | (                    | 38 🗖   |          |
|   | 4  | {                    | 37 🗖   |          |
|   | 5  | Setup Timer/Ints     | 36 🗖   |          |
|   | 6  | Start Timer          | 35 🗖   |          |
|   | 7  |                      | 34     |          |
|   | 8  | continuo             | 33 🗖   |          |
|   | 9  | continue             | 32 🗆   |          |
|   | 10 | }                    | 31 🗖   |          |
|   | 11 |                      | 30 🗖   |          |
|   | 12 | interrupt timer()    | 29     |          |
|   | 13 |                      | 28     |          |
|   | 14 |                      | 27 🗖   |          |
|   | 15 | //X time has elapsed | 26 🗖 🖌 |          |
|   | 16 | //perform ADC        | 25 🗖   |          |
|   | 17 |                      |        |          |
|   | 18 | //oto                | 23 🗖 🔛 |          |
|   | 19 |                      | 22 🗖 🚽 | <b>-</b> |
|   | 20 | }                    | 21     | - ວ      |
|   |    |                      |        |          |



#### Counter

• Count external/outside events and pulses





# Timer Length (Width or Mode) and Preload

- 8-bit timers: Can count from 0 255
- 16-bit timers: Can count from 0 65,535
- 32-bit timers: Can count from 0 4,294,967,295
- Can start counting at 0 or any preload within range
- Ex. 8-bit Overflow:  $-0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 254 \rightarrow 255 \rightarrow 0 \rightarrow 1 \rightarrow 2...$  $-200 \rightarrow 201 \rightarrow 202 \rightarrow ... \rightarrow 254 \rightarrow 255 \rightarrow 0 \rightarrow 200 \rightarrow 201...$



#### **Timer Overflow**



Source: <u>http://roberthall.net/PIC18F4550\_Timers</u>



#### Prescaler

- Sometimes the frequency is too fast
- A prescaler divides the clock source to obtain a smaller frequency (less frequent)

-1, 2, 4, 8, 16, 32, 64, 128, 256...











- d = 1.2sec (time period)
- $F_{osc} = 10MHz \rightarrow F_{in} = F_{osc} / 4 = 2.5MHz$
- 16-bit Timer: 0 65,535

- X = d \* F<sub>in</sub> = 1.2s \* 2.5Mhz
- X = d \*  $F_{in}$  = 1.2sec \* 2,500,000  $\frac{cycles}{sec}$
- X = d \* F<sub>in</sub> = 1.2s \* 2.5Mhz = 3,000,000 cycles

- 3,000,000 cycles (ticks) occur in 1.2s time span



• X = d \* F<sub>in</sub> = 1.2s \* 2.5Mhz = 3,000,000

- 3,000,000 cycles (pulses) occur in a 1.2s time span

- Use prescaler to bring down X to fit into the 16-bit Timer register (0 – 65,535)
  - 3,000,000 / 4 = 750,000 (> 65,535)
  - 3,000,000 / 16 = 187,500 (> 65,535)
  - 3,000,000 / 32 = 93,750 (> 65,535)
  - -3,000,000 / 64 = 46,875 (< 65,535)

→Use Prescaler 1:64



• X = d \* F<sub>in</sub> = 1.2s \* 2.5Mhz = 3,000,000

- 3,000,000 cycles/ticks occur in a 1.2s time span

- Using Prescaler 1:64 to find Preload value
  Now 46,875 ticks/cycles will occur in 1.2s span
- **Preload** = 65,535 3,000,000/64
  - = 65,535 46,875

= 18,661

Instead of counting  $0 \rightarrow 65,535$ Now count from **18,661**  $\rightarrow$  **65,535** 







- So if we want a 1.2 second delay when using a 10MHz oscillator...
  - 1. We select a 16-bit Timer
  - 2. Select the prescaler 1:64
  - 3. Load the timer register with 18,661 (dec)
  - 4. Turn on the Timer
  - 5. When the Timer overflows, we know that exactly 1.2s has passed



# Four PIC18F452 Timers

- Timer0: 8 or 16-bit timer/counter
  - TOCON, TMR0H:TMR0L
  - Prescalers: 1:2, 1:4, ..., 1:128, 1:256
- Timer1: 16-bit timer/counter
  - T1CON, TMR1H:TMR1L
  - Prescalers: 1:1, 1:2, 1:4, 1:8
- Timer2: 8-bit timer
  - T2CON, TMR2L
  - Prescalers: 1:1, 1:4, 1:16 and Postscalers: 1:1 ... 1:16
- Timer3: 16-bit timer/counter
  - T3CON, TMR3H:TMR3L
  - Prescalers: 1:1, 1:2, 1:4, 1:8



### SFRs are Used to "Control" the Timer Peripherals



#### TABLE 4-1: SPECIAL FUNCTION REGISTER MAP



|    | Address | Name                    | Name Address |                         | Address | Name    |
|----|---------|-------------------------|--------------|-------------------------|---------|---------|
|    | FFFh    | TOSU                    | FDFh         | INDF2 <sup>(3)</sup>    | FBFh    | CCPR1H  |
|    | FFEh    | TOSH                    | FDEh         | POSTINC2 <sup>(3)</sup> | FBEh    | CCPR1L  |
| TM | FFDh    | TOSL                    | FDDh         | POSTDEC2(3)             | FBDh    | CCP1CON |
|    | FFCh    | STKPTR                  | FDCh         | PREINC2 <sup>(3)</sup>  | FBCh    | CCPR2H  |
|    | FFBh    | PCLATU                  | FDBh         | PLUSW2 <sup>(3)</sup>   | FBBh    | CCPR2L  |
|    | FFAh    | PCLATH                  | FDAh         | FSR2H                   | FBAh    | CCP2CON |
|    | FF9h    | PCL                     | FD9h         | FSR2L                   | FB9h    | —       |
|    | FF8h    | TBLPTRU                 | FD8h         | STATUS                  | FB8h    | _       |
|    | FF7h    | TBLPTRH                 | FD7h         | TMR0H                   | FB7h    | _       |
|    | FF6h    | TBLPTRL                 | FD6h         | TMR0L                   | FB6h    | _       |
|    | FF5h    | TABLAT                  | FD5h         | T0CON                   | FB5h    | _       |
|    | FF4h    | PRODH                   | FD4h         | —                       | FB4h    | _       |
|    | FF3h    | PRODL                   | FD3h         | OSCCON                  | FB3h    | TMR3H   |
|    | FF2h    | INTCON                  | FD2h         | LVDCON                  | FB2h    | TMR3L   |
|    | FF1h    | INTCON2                 | FD1h         | WDTCON                  | FB1h    | T3CON   |
|    | FF0h    | INTCON3                 | FD0h         | RCON                    | FB0h    | —       |
|    | FEFh    | INDF0 <sup>(3)</sup>    | FCFh         | TMR1H                   | FAFh    | SPBRG   |
|    | FEEh    | POSTINC0 <sup>(3)</sup> | FCEh         | TMR1L                   | FAEh    | RCREG   |
|    | FEDh    | POSTDEC0 <sup>(3)</sup> | FCDh         | T1CON                   | FADh    | TXREG   |
|    | FECh    | PREINC0 <sup>(3)</sup>  | FCCh         | TMR2                    | FACh    | TXSTA   |
|    | FEBh    | PLUSW0 <sup>(3)</sup>   | FCBh         | PR2                     | FABh    | RCSTA   |
|    | FEAh    | FSR0H                   | FCAh         | T2CON                   | FAAh    | _       |
|    | FE9h    | FSR0L                   | FC9h         | SSPBUF                  | FA9h    | EEADR   |
|    | FE8h    | WREG                    | FC8h         | SSPADD                  | FA8h    | EEDATA  |
|    | FE7h    | INDF1 <sup>(3)</sup>    | FC7h         | SSPSTAT                 | FA7h    | EECON2  |
|    | FE6h    | POSTINC1 <sup>(3)</sup> | FC6h         | SSPCON1                 | FA6h    | EECON1  |
|    | FE5h    | POSTDEC1 <sup>(3)</sup> | FC5h         | SSPCON2                 | FA5h    | _       |
|    | FE4h    | PREINC1 <sup>(3)</sup>  | FC4h         | ADRESH                  | FA4h    | —       |
|    | FE3h    | PLUSW1 <sup>(3)</sup>   | FC3h         | ADRESL                  | FA3h    | _       |
|    | FE2h    | FSR1H                   | FC2h         | ADCON0                  | FA2h    | IPR2    |
|    | FE1h    | FSR1L                   | FC1h         | ADCON1                  | FA1h    | PIR2    |
|    | FE0h    | BSR                     | FC0h         | _                       | FA0h    | PIE2    |

| Address | Name                 |
|---------|----------------------|
| F9Fh    | IPR1                 |
| F9Eh    | PIR1                 |
| F9Dh    | PIE1                 |
| F9Ch    | _                    |
| F9Bh    | _                    |
| F9Ah    | _                    |
| F99h    | _                    |
| F98h    | _                    |
| F97h    | _                    |
| F96h    | TRISE <sup>(2)</sup> |
| F95h    | TRISD <sup>(2)</sup> |
| F94h    | TRISC                |
| F93h    | TRISB                |
| F92h    | TRISA                |
| F91h    | _                    |
| F90h    | _                    |
| F8Fh    | _                    |
| F8Eh    | _                    |
| F8Dh    | LATE <sup>(2)</sup>  |
| F8Ch    | LATD <sup>(2)</sup>  |
| F8Bh    | LATC                 |
| F8Ah    | LATB                 |
| F89h    | LATA                 |
| F88h    | _                    |
| F87h    | _                    |
| F86h    |                      |
| F85h    | _                    |
| F84h    | PORTE <sup>(2)</sup> |
| F83h    | PORTD <sup>(2)</sup> |
| F82h    | PORTC                |
| F81h    | PORTB                |
| F80h    | PORTA                |

17



## Timer0

- Timer0 can be used as an 8-bit or as a 16-bit timer
- Thus, two SFRs are used to contain the count:

or





- TOCON is the control register
- TMR0IF is the interrupt flag in the INTCON register
- The clock source for Timer0 may be internal or external

| Name   | Bit 7                           | Bit 6                                 | Bit 5    | Bit 4         | Bit 3 | Bit 2  | Bit 1         | Bit 0 |  |
|--------|---------------------------------|---------------------------------------|----------|---------------|-------|--------|---------------|-------|--|
| TMR0L  | Timer0 Module Low Byte Register |                                       |          |               |       |        |               |       |  |
| TMR0H  | Timer0 Modu                     | ule High Byte I                       | Register |               |       |        |               |       |  |
| INTCON | GIE/GIEH                        | PEIE/GIEL                             | TMR0IE   | <b>INTOIE</b> | RBIE  | TMR0IF | <b>INT0IF</b> | RBIF  |  |
| T0CON  | TMR0ON                          | T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS |          |               |       |        |               |       |  |
| TRISA  | _                               | PORTA Data Direction Register         |          |               |       |        |               |       |  |





bit

bit

bit

bit

bit

bit

## Timer0 Control Register T0CON

#### 10-1: T0CON: TIMER0 CONTROL REGISTER

|     | R/W-1                                              | R/W-1                                                                             | R/W-1          | R/W-1        | R/W-1 | R/W-1 | R/W-1 | R/W-1 |  |  |  |  |
|-----|----------------------------------------------------|-----------------------------------------------------------------------------------|----------------|--------------|-------|-------|-------|-------|--|--|--|--|
|     | TMR00N                                             | T08BIT                                                                            | T0CS           | T0SE         | PSA   | T0PS2 | T0PS1 | T0PS0 |  |  |  |  |
|     | bit 7                                              |                                                                                   |                |              |       |       |       | bit 0 |  |  |  |  |
|     |                                                    |                                                                                   |                |              |       |       |       |       |  |  |  |  |
| 7   | TMR0ON:                                            | Timer0 On/Of                                                                      | f Control bit  |              |       |       |       |       |  |  |  |  |
|     | 1 = Enable                                         | s Timer0                                                                          |                |              |       |       |       |       |  |  |  |  |
|     | 0 = Stops T                                        | limer0                                                                            |                |              |       |       |       |       |  |  |  |  |
| 6   | T08BIT: Timer0 8-bit/16-bit Control bit            |                                                                                   |                |              |       |       |       |       |  |  |  |  |
|     | 1 = Timer0 is configured as an 8-bit timer/counter |                                                                                   |                |              |       |       |       |       |  |  |  |  |
|     | 0 = Timer0                                         | is configured                                                                     | as a 16-bit t  | imer/counter |       |       |       |       |  |  |  |  |
| 5   | TOCS: Time                                         | er0 Clock Sou                                                                     | urce Select b  | it           |       |       |       |       |  |  |  |  |
|     | 1 = Transiti                                       | ion on T0CKI                                                                      | pin            |              |       |       |       |       |  |  |  |  |
|     | 0 = Interna                                        | l instruction c                                                                   | ycle clock (C  | LKO)         |       |       |       |       |  |  |  |  |
| 4   | TOSE: Time                                         | er0 Source Ed                                                                     | dge Select bi  | it           |       |       |       |       |  |  |  |  |
|     | 1 = Increm                                         | ent on high-to                                                                    | low transitio  | on on T0CKI  | pin   |       |       |       |  |  |  |  |
|     | 0 = Increm                                         | ent on low-to-                                                                    | high transitio | on on T0CKI  | pin   |       |       |       |  |  |  |  |
| 3   | PSA: Time                                          | r0 Prescaler /                                                                    | Assignment l   | bit          |       |       |       |       |  |  |  |  |
|     | 1 = TImer0                                         | 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.      |                |              |       |       |       |       |  |  |  |  |
|     | 0 = Timer0                                         | 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. |                |              |       |       |       |       |  |  |  |  |
| 2-0 | T0PS2:T0F                                          | <b>PS0</b> : Timer0 F                                                             | Prescaler Sel  | ect bits     |       |       |       |       |  |  |  |  |
|     | 111 = <b>1</b> :25                                 | 6 prescale va                                                                     | lue            |              |       |       |       |       |  |  |  |  |
|     | 110 = 1:12                                         | 8 prescale va                                                                     | lue            |              |       |       |       |       |  |  |  |  |
|     | 101 = <b>1</b> :64                                 | prescale valu                                                                     | le             |              |       |       |       |       |  |  |  |  |
|     | 100 = 1:32                                         | prescale valu                                                                     | le             |              |       |       |       |       |  |  |  |  |
|     | 011 = 1:16                                         | prescale valu                                                                     | le             |              |       |       |       |       |  |  |  |  |
|     | 010 = 1.8                                          | prescale val                                                                      | le             |              |       |       |       |       |  |  |  |  |
|     | 001 = 1.4<br>000 = 1.2                             | prescale val                                                                      |                |              |       |       |       |       |  |  |  |  |

- Note that timer interrupt enable/flag bits are in registers related to interrupts (e.g., INTCON)
- When the timer overflows, TMR0IF is set.
- 16- vs. 8-bit timer
- Prescalers are useful for large time delays



- 1. Select 8-bit mode and prescaler
- 2. Load TMROL with preload value (ignore TMROH)
- 3. Start timer (**TMR0ON = 1**)
- 4. Monitor TMROIF (or set interrupt on it)
- 5. When **TMR0IF** is set, stop the timer, reset the flag (and if needed go to step 2)

#### FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE





- 1. Select **16-bit** mode and **prescaler**
- 2. Load **TMR0H** and then **TMR0L** with preload values (load HIGH first!!)
  - Ex: 18,661 dec =  $0x48E5 \rightarrow TMR0H = 0x48$  and TMR0L = 0xE5
- 3. Start timer (**TMR0ON = 1**)
- 4. Monitor TMROIF (or set interrupt on it)
- 5. When **TMR0IF** is set, stop the timer, reset the flag (and if needed go to step 2) FIGURE 10-2: TIMER0 BLOCK DIAGRAM IN 16-BIT MODE





### Timer1

- Timer1 is **16-bit** only
- **T1CON** is the control register
- |D15 |D14 |D13 |D12 |D11 |D10 | D9 D8 D7 D6 D5 D4 D3 | D2 D1 DO

TMR1H

- **TMR1IF** is the interrupt flag in the **PIR1** register
- Prescaler does not support divisions above 1:8
- Timer1 has 2 external clock sources and 1 regular internal
  - Clock fed into T1CK1 pin (RC0)
  - Crystal (typically 32-kHz) connected between the T1CKI and T1OSI PINS (RC0&RC1) – for saving power during sleep mode. Timer1 is not shut down allowing use a clock that can be used for waking up

| Name   | Bit 7                | Bit 6                                                                      | Bit 5       | Bit 4         | Bit 3         | Bit 2     | Bit 1  | Bit 0  |  |  |
|--------|----------------------|----------------------------------------------------------------------------|-------------|---------------|---------------|-----------|--------|--------|--|--|
| INTCON | GIE/GIEH             | PEIE/GIEL                                                                  | TMR0IE      | INTOIE        | RBIE          | TMR0IF    | INTOIF | RBIF   |  |  |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF                                                                       | RCIF        | TXIF          | SSPIF         | CCP1IF    | TMR2IF | TMR1IF |  |  |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE                                                                       | RCIE        | TXIE          | SSPIE         | CCP1IE    | TMR2IE | TMR1IE |  |  |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP                                                                       | RCIP        | TXIP          | SSPIP         | CCP1IP    | TMR2IP | TMR1IP |  |  |
| TMR1L  | Holding Reg          | gister for the                                                             | Least Signi | ficant Byte o | of the 16-bit | FMR1 Regi | ster   |        |  |  |
| TMR1H  | Holding Reg          | Holding Register for the Most Significant Byte of the 16-bit TMR1 Register |             |               |               |           |        |        |  |  |
| T1CON  | RD16                 | _                                                                          | T1CKPS1     | T1CKPS0       | T1OSCEN       | T1SYNC    | TMR1CS | TMR10N |  |  |

22

TMR1L



0 = Stops Timer1

## Timer1 Control Register T1CON

#### R 11-1: T1CON: TIMER1 CONTROL REGISTER

|         | R/W-0                                                                                  | U-0                                   | R/W-0                        | R/W-0                             | R/W-0                            | R/W-0           | R/W-0  | R/W-0  |  |  |  |
|---------|----------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-----------------------------------|----------------------------------|-----------------|--------|--------|--|--|--|
|         | RD16                                                                                   | —                                     | T1CKPS1                      | T1CKPS0                           | T1OSCEN                          | T1SYNC          | TMR1CS | TMR10N |  |  |  |
|         | bit 7                                                                                  |                                       |                              |                                   |                                  |                 |        | bit 0  |  |  |  |
|         |                                                                                        |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
| bit 7   | RD16: 16-                                                                              | bit Read/V                            | Vrite Mode E                 | nable bit                         |                                  |                 |        |        |  |  |  |
|         | 1 = Enable<br>0 = Enable                                                               | es register<br>es register            | Read/Write o<br>Read/Write o | of Timer1 in o<br>of Timer1 in ty | ne 16-bit oper<br>wo 8-bit opera | ration<br>tions |        |        |  |  |  |
| bit 6   | Unimplem                                                                               | nented: Re                            | ad as '0'                    |                                   |                                  |                 |        |        |  |  |  |
| bit 5-4 | T1CKPS1                                                                                | T1CKPS0                               | : Timer1 Inp                 | ut Clock Pres                     | cale Select bit                  | ts              |        |        |  |  |  |
|         | 11 = 1:8 Prescale value                                                                |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
|         | 10 = 1:4 Prescale value                                                                |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
|         | 01 = 1.2 Prescale value<br>00 = 1.1 Prescale value                                     |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
| bit 3   | T10SCEN                                                                                | TIOSCEN: Timer1 Oscillator Enable bit |                              |                                   |                                  |                 |        |        |  |  |  |
| Sit O   | 1 = Timer1 Oscillator is enabled                                                       |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
|         | 0 = Timer1 Oscillator is shut-off                                                      |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
|         | The oscillator inverter and feedback resistor are turned off to eliminate power drain. |                                       |                              |                                   |                                  |                 |        |        |  |  |  |
| bit 2   | T1SYNC:                                                                                | Timer1 Ext                            | ternal Clock                 | nput Synchro                      | onization Sele                   | ct bit          |        |        |  |  |  |
|         | When TMF                                                                               | <u>R1CS = 1:</u>                      |                              |                                   |                                  |                 |        |        |  |  |  |
|         | 1 = Do not                                                                             | t synchroni                           | ze external o                | lock input                        |                                  |                 |        |        |  |  |  |
|         | 0 = Synch                                                                              |                                       | епаї сюск іп                 | put                               |                                  |                 |        |        |  |  |  |
|         | This hit is i                                                                          | ignored Ti                            | mer1 uses th                 | e internal clo                    | ock when TMB                     | 1CS = 0         |        |        |  |  |  |
| hit 1   | TMB1CS.                                                                                | Timer1 Cl                             | nck Source S                 | elect hit                         |                                  | 100 - 0.        |        |        |  |  |  |
| DIT I   | 1 = Extern                                                                             | al clock fro                          | om pin BC0/1                 | 10S0/T13C                         | KI (on the risir                 | na eqae)        |        |        |  |  |  |
|         | 0 = Interna                                                                            | al clock (Fo                          | osc/4)                       | 1000/1100                         |                                  | ig ougo/        |        |        |  |  |  |
| bit 0   | TMR1ON:                                                                                | Timer1 Or                             | n bit                        |                                   |                                  |                 |        |        |  |  |  |
|         | 1 = Enable                                                                             | es Timer1                             |                              |                                   |                                  |                 |        |        |  |  |  |

- 16-bit mode only
- Smaller prescaler range
  - Timer1 can be used as
    - 1. timer
    - 2. synchronous counter (T1SYNC)
    - 3. asynchronous counter



## **Timer1 Block Diagram**







#### Timer2

- Timer2 is an **8-bit** only
- T2CON is the control register



- TMR2IF is the interrupt flag in the PIR1 register
- Timer2 has a period register PR2; Timer2 can be set to count only to PR2 and set TMR2IF then
- Clock source is only Fosc/4 (Timer2 cannot be a counter)
- Has both a prescaler and a postscaler

| Name   | Bit 7                | Bit 6        | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1         | Bit 0   |
|--------|----------------------|--------------|---------|---------|---------|--------|---------------|---------|
| INTCON | <b>GIE/GIEH</b>      | PEIE/GIEL    | TMR0IE  | INT0IE  | RBIE    | TMR0IF | <b>INT0IF</b> | RBIF    |
| PIR1   | PSPIF <sup>(1)</sup> | ADIF         | RCIF    | TXIF    | SSPIF   | CCP1IF | TMR2IF        | TMR1IF  |
| PIE1   | PSPIE <sup>(1)</sup> | ADIE         | RCIE    | TXIE    | SSPIE   | CCP1IE | TMR2IE        | TMR1IE  |
| IPR1   | PSPIP <sup>(1)</sup> | ADIP         | RCIP    | TXIP    | SSPIP   | CCP1IP | TMR2IP        | TMR1IP  |
| TMR2   | Timer2 Mo            | dule Registe | r       |         |         |        |               |         |
| T2CON  | —                    | TOUTPS3      | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1       | T2CKPS0 |
| PR2    | Timer2 Per           | iod Register |         |         |         |        |               |         |



bit 7 bit 6-3

bit 2

bit 1-0

### Timer2 Control Register T2CON

#### REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER

| U-0      | R/W-0         | R/W-0         | R/W-0         | R/W-0         | R/W-0  | R/W-0   | R/W-0   |
|----------|---------------|---------------|---------------|---------------|--------|---------|---------|
| _        | TOUTPS3       | TOUTPS2       | TOUTPS1       | TOUTPS0       | TMR2ON | T2CKPS1 | T2CKPS0 |
| bit 7    | •             |               |               |               |        | •       | bit 0   |
|          |               |               |               |               |        |         |         |
| Unimple  | emented: Re   | ad as '0'     |               |               |        |         |         |
| TOUTPS   | S3:TOUTPS0    | : Timer2 Out  | put Postscale | e Select bits |        |         |         |
| 0000 =   | 1:1 Postscale | )             |               |               |        |         |         |
| 0001 =   | 1:2 Postscale | •             |               |               |        |         |         |
| •        |               |               |               |               |        |         |         |
| •        |               |               |               |               |        |         |         |
| 1111 =   | 1:16 Postsca  | le            |               |               |        |         |         |
| TMR2O    | N: Timer2 On  | bit           |               |               |        |         |         |
| 1 = Time | er2 is on     |               |               |               |        |         |         |
| 0 = Time | er2 is off    |               |               |               |        |         |         |
| T2CKPS   | 1:T2CKPS0     | : Timer2 Cloo | k Prescale S  | elect bits    |        |         |         |
| 00 = Pre | escaler is 1  |               |               |               |        |         |         |
| 01 = Pre | escaler is 4  |               |               |               |        |         |         |
| 1x = Pre | escaler is 16 |               |               |               |        |         |         |
|          |               |               |               |               |        |         |         |



## **Timer2 Block Diagram**

FIGURE 12-1: TIMER2 BLOCK DIAGRAM









- Timer3 is **16-bit** only
- T3CON is the control register



- **TMR3IF** is the interrupt flag in the **PIR2** register
- Can work with CCP peripheral (later)
- Timer3 has 2 external clock sources and 1 regular internal
  - Same external source(s) as timer1
- Can be used as timer, ascynchronous, or synchronous counter

| Name   | Bit 7        | Bit 6          | Bit 5        | Bit 4         | Bit 3          | Bit 2      | Bit 1  | Bit 0  |
|--------|--------------|----------------|--------------|---------------|----------------|------------|--------|--------|
| INTCON | GIE/<br>GIEH | PEIE/<br>GIEL  | TMROIE       | INTOIE        | RBIE           | TMR0IF     | INTOIF | RBIF   |
| PIR2   | —            | _              | _            | EEIF          | BCLIF          | LVDIF      | TMR3IF | CCP2IF |
| PIE2   | —            | _              | _            | EEIE          | BCLIE          | LVDIE      | TMR3IE | CCP2IE |
| IPR2   | —            |                | _            | EEIP          | BCLIP          | LVDIP      | TMR3IP | CCP2IP |
| TMR3L  | Holding F    | legister for t | he Least Się | gnificant Byt | e of the 16-b  | it TMR3 Re | gister |        |
| ТMR3H  | Holding F    | legister for t | he Most Sig  | nificant Byte | e of the 16-bi | t TMR3 Reg | gister |        |
| T1CON  | RD16         | _              | T1CKPS1      | T1CKPS0       | T1OSCEN        | T1SYNC     | TMR1CS | TMR10N |
| T3CON  | RD16         | T3CCP2         | T3CKPS1      | T3CKPS0       | T3CCP1         | T3SYNC     | TMR3CS | TMR3ON |

28



## **Timer3 Block Diagram**

FIGURE 13-1: TIMER3 BLOCK DIAGRAM



Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.





#### Timer3 Control Register T3CON

#### 13-1: T3CON: TIMER3 CONTROL REGISTER

|         | R/W-0                                                           | R/W-0          | R/W-0          | R/W-0            | R/W-0        | R/W-0      | R/W-0  | R/W-0  |  |  |  |  |
|---------|-----------------------------------------------------------------|----------------|----------------|------------------|--------------|------------|--------|--------|--|--|--|--|
|         | RD16                                                            | T3CCP2         | T3CKPS1        | T3CKPS0          | T3CCP1       | T3SYNC     | TMR3CS | TMR3ON |  |  |  |  |
|         | bit 7                                                           |                |                |                  |              |            |        | bit 0  |  |  |  |  |
|         |                                                                 |                |                |                  |              |            |        |        |  |  |  |  |
| bit 7   | RD16: 16                                                        | -bit Read/W    | rite Mode Er   | nable bit        |              |            |        |        |  |  |  |  |
|         | 1 = Enable                                                      | es register l  | Read/Write o   | of Timer3 in o   | ne 16-bit op | eration    |        |        |  |  |  |  |
| bit 6-3 | T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits            |                |                |                  |              |            |        |        |  |  |  |  |
| Sit 0 0 | 1x - Timer3 is the clock source for compare/canture CCP modules |                |                |                  |              |            |        |        |  |  |  |  |
|         | 01 = Time                                                       | r3 is the clo  | ck source fo   | r compare/ca     | pture of CC  | P2,        |        |        |  |  |  |  |
|         | Time                                                            | r1 is the clo  | ck source fo   | r compare/ca     | pture of CC  | P1         |        |        |  |  |  |  |
|         | 00 = Time                                                       | r1 is the clo  | ck source fo   | r compare/ca     | pture CCP    | modules    |        |        |  |  |  |  |
| bit 5-4 | T3CKPS1                                                         | :T3CKPS0       | Timer3 Inpu    | ut Clock Pres    | cale Select  | bits       |        |        |  |  |  |  |
|         | 11 = 1:8 F                                                      | Prescale val   | ue             |                  |              |            |        |        |  |  |  |  |
|         | 10 = 1:4 F                                                      | Prescale val   | ue             |                  |              |            |        |        |  |  |  |  |
|         | 01 = 1.2 F<br>00 = 1.1 F                                        | Prescale val   | ue             |                  |              |            |        |        |  |  |  |  |
| bit 2   | T3SYNC                                                          | Timer3 Ext     | ernal Clock I  | nput Synchro     | nization Co  | ntrol bit  |        |        |  |  |  |  |
|         | (Not usab                                                       | le if the syst | tem clock co   | mes from Tin     | ner1/Timer3  | )          |        |        |  |  |  |  |
|         | When TM                                                         | R3CS = 1:      |                |                  |              |            |        |        |  |  |  |  |
|         | 1 = Do no                                                       | t synchroniz   | ze external c  | lock input       |              |            |        |        |  |  |  |  |
|         | 0 = Synch                                                       | ironize exte   | rnal clock inp | out              |              |            |        |        |  |  |  |  |
|         | When TM                                                         | R3CS = 0:      |                |                  |              |            |        |        |  |  |  |  |
|         | This bit is                                                     | ignored. Tir   | ner3 uses th   | e internal clo   | ck when TN   | IR3CS = 0. |        |        |  |  |  |  |
| bit 1   | TMR3CS:                                                         | Timer3 Clo     | ck Source S    | elect bit        |              |            |        |        |  |  |  |  |
|         | 1 = Extern                                                      | nal clock inp  | out from Time  | er1 oscillator   | or T1CKI     |            |        |        |  |  |  |  |
|         | (on th                                                          | e rising edg   | e after the fi | irst falling ede | ge)          |            |        |        |  |  |  |  |
| 1       | v = intern                                                      | ai clock (FC   | ISC/4)         |                  |              |            |        |        |  |  |  |  |
| bit 0   | IMR3ON:                                                         | : Timer3 On    | bit            |                  |              |            |        |        |  |  |  |  |

- 1 = Enables Timer3
- 0 = Stops Timer3



# **Timer0 Interrupt Example**

#### 1. In **T0CON**...

- 1. Select 16-bit mode
- 2. Select internal or external clock source
- 3. Allow prescaler option if desired
- 4. Select desired prescaler

#### 2. Load TMR0H and TMR0L with preloads (load HIGH first!!)

- Ex: 18,661 dec = 0x48E5 → TMR0H = 0x48 and TMR0L = 0xE5

#### 3. In **INTCON...**

- 1. Enable the **TMROIE** interrupt bit
- 2. Enable the **PEIE** peripheral interrupt bit
- 3. Enable the **GIE** global interrupt bit
- 4. Start timer (T0CONbits.TMR0ON = 1)
- 5. Monitor TMR0IF (if only polling)
- 6. When overflow occurs (1.2s has passed) TMR0IF is set to 1
- 7. In the ISR...
  - 1. Identify the interrupt source
  - 2. Stop the timer (disable Timer0)
  - 3. Reset the flag (if needed go to step 2 of writing preload values)



# Using PIC18 Timers for CCP (Capture, Compare, and PWM)

- Timer0 is usually just for generic timing
- Timers 1 and 3 can be used for capture and compare features
  - T3CON is used to chose the timer for CCP
- Timer2 is used for PWM
  - Note: These rules do not always apply, have to check the specific PIC18 datasheet



# Using PIC18 Timers for CCP (Capture, Compare, and PWM)





- Compare (input)
  - Count outside events (incoming to the PIC's pins)
  - When X have occurred  $\rightarrow$  do something
- Capture (input)
  - Measure an unknown signal's frequency (period) or PWM Duty Cycle
- **PWM** (output)
  - Send a precise signal out of the PIC



# **PWM Basics** (Pulse Width Modulation)

- Digital signals have two distinct levels: high and low
- These levels are usually represented by a voltage – e.g., in PIC low is 0V and high is VCC (5V)
- A temporal digital signal changes with time from low to high and back
- Thus we can describe temporal digital signals with a series of values representing the time for which they stay in one state
- Periodic temporal digital signals have a distinct frequency
  - the inverse of the time between two consecutive rising edges



# **PWM Basics (cont'd)**

• If  $t_1 + t_2$  remain constant  $\rightarrow$  frequency remains constant



- Such periodic signals can still have varying times they spend in high vs. low state
- PWM Duty Cycle is the portion of the pulse that stays HIGH relative to the entire period

$$\mathsf{DC}[\%] = 100 * \frac{t_1}{t_1 + t_2}$$

| 25% DC  | Л | <br>_∩   | _∩ |   |            |
|---------|---|----------|----|---|------------|
| 50% DC  |   |          | டு |   | า          |
| 75% DC  |   | <u>п</u> |    | ᠾ | <b>-</b> U |
| 100% DC |   |          |    |   | 36         |


## **PWM Basics (cont'd)**





# **PWM Basics (cont'd)**

- There are various sensors that provide their output as PWM signals, where the DC corresponds to the reading
- There are various actuators that work well with a PWM input

|   |                                |         | -                                      | R                                         |                                         |
|---|--------------------------------|---------|----------------------------------------|-------------------------------------------|-----------------------------------------|
|   | 75% DC                         |         | 0                                      |                                           | o                                       |
|   | 100% DC -                      |         | Square Wave Input                      | Signal                                    | c 1                                     |
| ) | An appropriate RC filter (Inte | grator) |                                        | ¯                                         | Vout                                    |
|   | can make an analog signal o    | ut      | 0                                      |                                           | <b>`</b>                                |
|   | of a PWM digital signal        |         |                                        | $\bigwedge$                               | $\sim$                                  |
|   | R<br>O<br>PWM Analog           |         | V <sub>out</sub> at Low<br>Frequencies | V <sub>out</sub> at Medium<br>Frequencies | V <sub>out</sub> at High<br>Frequencies |
|   | C =                            |         | Source: http://w                       | ww.electronics                            | -tutorials.ws/                          |
|   |                                |         |                                        |                                           | 38                                      |



## **PIC18's CCP Modules**

- PIC18s have **0 5 CCP** modules on-board (CCPx) with 3 modes
- Capture
  - can use an external **input** to copy timer values into a 16-bit register
  - provides the capability of **measuring** the period of a pulse

#### • Compare

- enables the **counter** value of timers to be compared to a 16-bit register
- if equal, then perform an action
- PWM
  - can be used as a quasi-analog **output** (timed digital output with duty cycle setting)
- These are great for driving motors, reading encoders, IR comm.
- For DC motor control some of the CCPs have been enhanced and are called ECCP
- The PIC18F452 has 2 CCP Modules: CCP1 & CCP2
  - can be used at the same time but only 1 mode per CCP at a time 39



#### TABLE 14-1: CCP MODE - TIMER RESOURCE

| CCP Mode | Timer Resource   |  |  |  |
|----------|------------------|--|--|--|
| Capture  | Timer1 or Timer3 |  |  |  |
| Compare  | Timer1 or Timer3 |  |  |  |
| PWM      | Timer2           |  |  |  |

| T3CON: TIMER3 CONTROL REGISTER |        |         |         |        |                |        |        |  |  |  |  |  |
|--------------------------------|--------|---------|---------|--------|----------------|--------|--------|--|--|--|--|--|
| R/W-0                          | R/W-0  | R/W-0   | R/W-0   | R/W-0  | R/W-0          | R/W-0  | R/W-0  |  |  |  |  |  |
| RD16                           | T3CCP2 | T3CKPS1 | T3CKPS0 | T3CCP1 | <b>T</b> 3SYNC | TMR3CS | TMR3ON |  |  |  |  |  |
| bit 7 bit 0                    |        |         |         |        |                |        |        |  |  |  |  |  |

These rules do not always apply – have to check the specific PIC18 datasheet





CSE@UTA

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

|         | R/W-0                                                             | R/W-0                  | R/W-0           | R/W-0            | R/W-0        | R/W-0       | R/W-0  | R/W-0  |  |  |  |  |
|---------|-------------------------------------------------------------------|------------------------|-----------------|------------------|--------------|-------------|--------|--------|--|--|--|--|
|         | RD16                                                              | T3CCP2                 | T3CKPS1         | T3CKPS0          | T3CCP1       | T3SYNC      | TMR3CS | TMR3ON |  |  |  |  |
|         | bit 7                                                             |                        | •               |                  |              |             | •      | bit 0  |  |  |  |  |
|         |                                                                   |                        |                 |                  |              |             |        |        |  |  |  |  |
| bit 7   | <b>RD16:</b> 16                                                   | -bit Read/W            | /rite Mode Er   | nable bit        |              |             |        |        |  |  |  |  |
|         | 1 = Enabl                                                         | es register l          | Read/Write o    | of Timer3 in o   | ne 16-bit op | eration     |        |        |  |  |  |  |
|         | 0 = Enables register Read/Write of Timer3 in two 8-bit operations |                        |                 |                  |              |             |        |        |  |  |  |  |
| bit 6-3 | T3CCP2:                                                           | T3CCP1: Ti             | mer3 and Tir    | mer1 to CCP      | x Enable bit | S           |        |        |  |  |  |  |
|         | 1x = Timer3 is the clock source for compare/capture CCP modules   |                        |                 |                  |              |             |        |        |  |  |  |  |
|         | 01 = Timer3 is the clock source for compare/capture of CCP2,      |                        |                 |                  |              |             |        |        |  |  |  |  |
|         | Timer1 is the clock source for compare/capture of CCP1            |                        |                 |                  |              |             |        |        |  |  |  |  |
|         | 00 = 1 ime                                                        | er1 is the clo         | ck source to    | r compare/ca     | apture CCP   | modules     |        |        |  |  |  |  |
| bit 5-4 | T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits          |                        |                 |                  |              |             |        |        |  |  |  |  |
|         | 11 = 1:8 Prescale value                                           |                        |                 |                  |              |             |        |        |  |  |  |  |
|         | 10 = 1:4 H                                                        | Prescale val           | ue              |                  |              |             |        |        |  |  |  |  |
|         | 01 = 1.2 r<br>00 = 1.1 F                                          | Prescale val           | ue              |                  |              |             |        |        |  |  |  |  |
| hit 2   | TISYNC                                                            | Timer <sup>3</sup> Ext | ernal Clock I   | nnut Synchro     | nization Co  | ntrol bit   |        |        |  |  |  |  |
|         | (Not usab                                                         | le if the svs          | tem clock co    | mes from Tin     | ner1/Timer3  | ()          |        |        |  |  |  |  |
|         | When TM                                                           | B3CS = 1:              |                 |                  |              | /           |        |        |  |  |  |  |
|         | 1 = Do no                                                         | t synchroniz           | ze external c   | lock input       |              |             |        |        |  |  |  |  |
|         | 0 = Synch                                                         | nronize exte           | rnal clock inp  | out              |              |             |        |        |  |  |  |  |
|         | When TM                                                           | R3CS = 0:              |                 |                  |              |             |        |        |  |  |  |  |
|         | This bit is                                                       | ignored. Tir           | ner3 uses th    | e internal clo   | ck when TM   | /IR3CS = 0. |        |        |  |  |  |  |
| bit 1   | TMR3CS:                                                           | Timer3 Clo             | ock Source S    | elect bit        |              |             |        |        |  |  |  |  |
|         | 1 = Exter                                                         | nal clock in           | out from Time   | er1 oscillator   | or T1CKI     |             |        |        |  |  |  |  |
|         | (on th                                                            | ne rising edg          | ge after the fi | irst falling edg | ge)          |             |        |        |  |  |  |  |
|         | 0 = Intern                                                        | nal clock (Fo          | osc/4)          |                  |              |             |        |        |  |  |  |  |
| bit 0   | TMR3ON                                                            | : Timer3 On            | bit             |                  |              |             |        |        |  |  |  |  |
|         | 1 = Enabl                                                         | es Timer3              |                 |                  |              |             |        |        |  |  |  |  |

0 = Stops Timer3



#### **CCPx Pins**



42



## **CCP Module Basics**

- Each CCP module has 3 associated registers
  - CCPxCON controlling the modes
  - CCPxL and CCPxH as a 16-bit compare/capture/PWM duty cycle register



• Each CCP module has a pin associated with it (input or output)





prescalers

#### CCP 1 & 2 Module Control CCPxCON

REGISTER 14-1: CCP1CON REGISTER/CCP2CON REGISTER

|         | U-0                                                                                            | U-0   | R/W-0 | R/W-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------|-------|-------|-------|--------|--------|--------|--------|--|--|--|--|
|         | —                                                                                              | —     | DCxB1 | DCxB0 | CCPxM3 | CCPxM2 | CCPxM1 | CCPxM0 |  |  |  |  |
|         | bit 7                                                                                          |       |       |       |        |        |        | bit 0  |  |  |  |  |
|         |                                                                                                |       |       |       |        |        |        |        |  |  |  |  |
| bit 7-6 | Unimplemented: Read as '0'                                                                     |       |       |       |        |        |        |        |  |  |  |  |
| bit 5-4 | DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0                                                      |       |       |       |        |        |        |        |  |  |  |  |
|         | Capture me                                                                                     | ode:  |       |       |        |        |        |        |  |  |  |  |
|         | Unused                                                                                         |       |       |       |        |        |        |        |  |  |  |  |
|         | Compare n                                                                                      | node: |       |       |        |        |        |        |  |  |  |  |
|         | Unused                                                                                         |       |       |       |        |        |        |        |  |  |  |  |
|         | PWM mode:                                                                                      |       |       |       |        |        |        |        |  |  |  |  |
|         | These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits |       |       |       |        |        |        |        |  |  |  |  |
|         | (DCx9:DCx2) of the duty cycle are found in CCPRxL.                                             |       |       |       |        |        |        |        |  |  |  |  |

- bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits
  - 0000 = Capture/Compare/PWM disabled (resets CCPx module)
  - 0001 = Reserved
  - 0010 = Compare mode, toggle output on match (CCPxIF bit is set)
  - 0011 = Reserved
  - 0100 = Capture mode, every falling edge
  - 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
  - 0111 = Capture mode, every 16th rising edge
  - 1000 = Compare mode,
    - Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)
  - 1001 = Compare mode,
    - Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)
  - 1010 = Compare mode,
    - Generate software interrupt on compare match (CCPIF bit is set, CCP pin is unaffected)
  - 1011 = Compare mode, Trigger special event (CCPIF bit is set)
  - 11xx = PWM mode



#### **Relevant Registers**



| Name    | Bit 7                                               | Bit 6          | Bit 5        | Bit 4         | Bit 3         | Bit 2          | Bit 1         | Bit 0     | Value on<br>POR, BOR | Value on<br>All Other<br>RESETS |
|---------|-----------------------------------------------------|----------------|--------------|---------------|---------------|----------------|---------------|-----------|----------------------|---------------------------------|
| INTCON  | GIE/GIEH                                            | PEIE/GIEL      | TMR0IE       | INTOIE        | RBIE          | TMR0IF         | INTOIF        | RBIF      | 0000 000x            | 0000 000u                       |
| PIR1    | PSPIF <sup>(1)</sup>                                | ADIF           | RCIF         | TXIF          | SSPIF         | CCP1IF         | TMR2IF        | TMR1IF    | 0000 0000            | 0000 0000                       |
| PIE1    | PSPIE <sup>(1)</sup>                                | ADIE           | RCIE         | TXIE          | SSPIE         | CCP1IE         | TMR2IE        | TMR1IE    | 0000 0000            | 0000 0000                       |
| IPR1    | PSPIP <sup>(1)</sup>                                | ADIP           | RCIP         | TXIP          | SSPIP         | CCP1IP         | TMR2IP        | TMR1IP    | 0000 0000            | 0000 0000                       |
| TRISC   | PORTC D                                             | ata Directior  |              | 1111 1111     | 1111 1111     |                |               |           |                      |                                 |
| TMR1L   | Holding Re                                          | egister for th |              | xxxx xxxx     | uuuu uuuu     |                |               |           |                      |                                 |
| TMR1H   | Holding Re                                          | egister for th |              | xxxx xxxx     | uuuu uuuu     |                |               |           |                      |                                 |
| T1CON   | RD16 — T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON |                |              |               |               |                |               | 0-00 0000 | u-uu uuuu            |                                 |
| CCPR1L  | Capture/C                                           | ompare/PW      | M Register1  | (LSB)         |               |                |               |           | xxxx xxxx            | uuuu uuuu                       |
| CCPR1H  | Capture/C                                           | ompare/PW      | M Register1  | (MSB)         |               |                |               |           | xxxx xxxx            | uuuu uuuu                       |
| CCP1CON | —                                                   | —              | DC1B1        | DC1B0         | CCP1M3        | CCP1M2         | CCP1M1        | CCP1M0    | 00 0000              | 00 0000                         |
| CCPR2L  | Capture/C                                           | ompare/PW      | M Register2  | (LSB)         |               |                |               |           | xxxx xxxx            | uuuu uuuu                       |
| CCPR2H  | Capture/C                                           | ompare/PW      | M Register2  | (MSB)         |               |                |               |           | xxxx xxxx            | uuuu uuuu                       |
| CCP2CON | —                                                   | —              | DC2B1        | DC2B0         | CCP2M3        | CCP2M2         | CCP2M1        | CCP2M0    | 00 0000              | 00 0000                         |
| PIR2    | —                                                   | —              | —            | EEIE          | BCLIF         | LVDIF          | TMR3IF        | CCP2IF    | 0 0000               | 0 0000                          |
| PIE2    | —                                                   | —              | —            | EEIF          | BCLIE         | LVDIE          | <b>TMR3IE</b> | CCP2IE    | 0 0000               | 0 0000                          |
| IPR2    | —                                                   | —              | —            | EEIP          | BCLIP         | LVDIP          | <b>TMR3IP</b> | CCP2IP    | 1 1111               | 1 1111                          |
| TMR3L   | Holding Re                                          | egister for th | e Least Sigr | nificant Byte | of the 16-bit | t TMR3 Re      | gister        |           | xxxx xxxx            | uuuu uuuu                       |
| TMR3H   | Holding Re                                          | egister for th | e Most Sign  | ificant Byte  | of the 16-bit | TMR3 Reg       | ister         |           | xxxx xxxx            | uuuu uuu                        |
| T3CON   | RD16                                                | T3CCP2         | T3CKPS1      | T3CKPS0       | T3CCP1        | <b>T</b> 3SYNC | TMR3CS        | TMR3ON    | 0000 0000            | uuuu uuuu                       |



#### **Compare Mode**

#### ~ *IF(CCP == TMR1/3) THEN...*

- The CCPRxH:CCPRxL is loaded by the user
- If Timer1 TMR1H:TMR1L (or Timer3 T3CON) count becomes equal to the above set value then the Compare module can:
  - 1. Drive the CCPx pin high (CCPx config'd as out)
  - 2. Drive the CCPx pin low (CCPx config'd as out)
  - 3. Toggle the CCPx pin (CCPx config'd as out)
  - 4. Trigger a CCPxIF interrupt and clear the timer
  - 5. CCP2 can be used to kick off the A/D converter



#### **Compare Mode**





- 0. Set up CCP interrupt if needed
- 1. Initialize CCPxCON for compare
- 2. Pick timer source (T3CON)
- 3. Initialize the CCPRxH:CCPRxL 16-bit value
- 4. Make sure CCPx pin is **output** if used
  - setting appropriate TRISbits
- 5. Initialize Timer1 (or Timer3)
- 6. Start Timer1 (or Timer3)
- 7. Poll CCPxIF flag or make sure interrupt is handled



### **Capture Mode**

- The CCPx pin is set as **input** (set TRISbits)
- When an external event triggers the CCPx pin, then the TMR1H:TMR1L (or Timer3) values will be loaded into CCPRxH:CCPRxL
- Four options for CCPx pin triggering:
  - Every falling edge
  - Every rising edge
  - Every 4<sup>th</sup> rising edge
  - Every 16<sup>th</sup> rising edge



 Typical applications are measuring frequency or pulsewidth



#### Capture Mode Programming for Frequency Measurement

- 1. Initialize CCPxCON for capture
- 2. Make CCPx pin an input pin (TRISB/TRISC)
- 3. Pick timer source (T3CON)
- 4. On first rising edge, Timer1/3 is loaded into CCPRxH:CCPRxL
  - remember values
- 5. On next rising edge, Timer1/3 is loaded into CCPRxH:CCPRxL
  - subtract previous values from current values
- You have now the period of the signal captured by timer ticks. Some basic math will give you frequency





### **Capture Mode Programming for Frequency Measurement**





#### Capture Mode Programming for Measuring PWM Duty Cycle

- 1. Initialize CCPxCON for capture
- 2. Make CCPx pin an input pin (TRISB/TRISC)
- 3. Pick timer source (T3CON)
- 4. On rising edge, Timer is started & mode set to falling edge
- 5. On falling edge the CCPRxH:CCPRxL should be saved, CCP should be set to rising edge
- 6. On rising edge CCPRxH:CCPRxL is saved
  - Now we have measurements for  $t_1$  and  $t_2$
- 7. DC can be calculated while new measurement is prepared





## Capture Mode Programming for Measuring PWM Duty Cycle





## Capture Mode Programming for Measuring PWM Duty Cycle





## **PWM Mode** (Generate Precise Output)

100% DC **J** 





#### **PWM Mode**

- PWM output can be created without tedious programming of the compare mode or timers
- ECCP's PWM mode enables generating temporal digital signals of varying frequencies and varying DC
   – recall: width of the pulse indicates some measured quantity
- Recall, that the PWM Duty Cycle is the portion of the pulse at HIGH relative to the entire period
  - $DC[\%] = 100^{*}t_{1}/(t_{1}+t_{2})$



- For PWM, Timer2 is used
- Recall, that Timer 2 has a period register PR2



### **Timer2 Block Diagram**

FIGURE 12-1: TIMER2 BLOCK DIAGRAM







## PWM Specify Two Things





### **PWM Mode Desired Period and Frequency**

- T<sub>pwm</sub> = desired PWM period (time, secs/cycle)
- **F**<sub>pwm</sub> = desired PWM freq. (rate, cycles/sec)
  - $T_{pwm} = 1 / F_{pwm}$
- PR2: 0 255 (from TMR2)
- $T_{osc} = 1 / F_{osc}$

• 
$$T_{pwm} = 4*N*(PR2+1) / F_{osc}$$
 or....

- T<sub>pwm</sub> = 4\*N\*(PR2+1) \* T<sub>osc</sub>
  - where N is the prescaler of TMR2 (1, 4, 16) <sup>59</sup>



## PWM Mode Desired Period and Frequency

Fastest Rate

- Min 
$$T_{pwm} = 4*1*(0+1) * T_{osc} = 4 T_{osc}$$
  
- Max  $F_{pwm} = 1 / T_{pwm} = F_{osc} / 4$ 

Slowest Rate

- Max 
$$T_{pwm} = 4*16*(255+1) * T_{osc} = 16,384 T_{osc}$$
  
- Min  $F_{pwm} = 1 / T_{pwm} = F_{osc} / 16,384$ 



## PWM Mode Ex. Desired Period and Frequency

Find the PR2 value and the prescaler needed to get the following PWM frequencies. Assume XTAL = 20 MHz. (a) 1.22 kHz, (b) 4.88 kHz, (c) 78.125 kHz

#### Solution:

(a) PR2 value =  $[(20 \text{ MHz} / (4 \times 1.22 \text{ kHz})] - 1 = 4,097$ , which is larger than 255, the maximum value allowed for the PR2. Now choosing the prescaler of 16 we get PR2 value =  $[(20 \text{ MHz} / (4 \times 1.22 \text{ kHz} \times 16)] - 1 = 255$ 

(b) PR2 value =  $[(20 \text{ MHz} / (4 \times 4.88 \text{ kHz})] - 1 = 1,023$ , which is larger than 255, the maximum value allowed for the PR2. Now choosing the prescaler of 4 we get PR2 value =  $[(20 \text{ MHz} / (4 \times 4.88 \text{ kHz} \times 4)] - 1 = 255$ 

(c) PR2 value =  $[(20 \text{ MHz} / (4 \times 78.125 \text{ kHz})] - 1 = 63$ 



# PWM Mode Ex. Desired Period and Frequency

Find the minimum and maximum Fpwm frequency allowed for XTAL = 10 MHz. State the PR2 and prescaler values for the minimum and maximum Fpwm.

#### Solution:

We get the minimum Fpwm by making PR2 = 255 and prescaler = 16, which gives us  $10 \text{ MHz} / (4 \times 16 \times 256) = 610 \text{ Hz}.$ 

We get the maximum Fpwm by making PR2 = 1 and prescaler = 1, which gives us 10 MHz /  $(4 \times 1 \times 1) = 2.5$  MHz.



































## PWM Mode Desired Duty Cycle

- PIC18F452 has "10-bit" duty cycle resolution

   Remember, DC is just a percentage of the period
   Ex:
  - -DC[%] = 75% = .75
  - $-T_{PWM} = .4ms$

$$-T_{DC} = (.75)(.4ms) = .3ms$$



| Bit 9 | Bit 8 | Bit 7 | Bit 6            | Bit 5            | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|------------------|------------------|-------|-------|-------|-------|-------|
|       |       |       | CCPxCON<br>DCxB1 | CCPxCON<br>DCxB0 |       |       |       |       |       |

| CCPR1L Capture/Compare/PWM Register1 (LSB) |   |   |       |       |        |        |        |        |  |  |  |
|--------------------------------------------|---|---|-------|-------|--------|--------|--------|--------|--|--|--|
|                                            | - |   |       |       |        |        |        | 74     |  |  |  |
| CCP1CON                                    | — | — | DC1B1 | DC1B0 | CCP1M3 | CCP1M2 | CCP1M1 | CCP1M0 |  |  |  |



### **PWM Example**

- Knowns
  - $-F_{OSC}$
  - $-F_{\rm PWM}$
  - DC(%)

#### Unknowns to Calculate

- PR2 register value
  - To set T<sub>PWM</sub> (PWM period)
- CCPR1L:CCP1CON<5:4> register value
  - To set T<sub>DC</sub> (Duty Cycle period)

- So we also know
  - $-T_{OSC}$

#### $-T_{PWM}$


## **PWM Example**

- $F_{OSC} = 10 \text{ MHz}$
- $F_{PWM} = 2.5 \text{ kHz}$
- DC(%) = 75%

- Note
  - PR2 (8-bit): 0-255
  - CCPR... (10-bit): 0-1023





- 1. Set PWM **period** by setting PR2 and T2CON (prescaler)
- 2. Set PWM **duty cycle** by calculating and writing **top 8 bits** to CCPRxL and the **remainder** 2 to CCPxCON<5:4> bits
- 3. Set the CCPx as output (TRIS)
- 4. Clear TMR2
- 5. Set CCPx to **PWM mode**
- 6. Start Timer 2
- 7. CCPx output pin will constantly keep outputting your signal at the set period and DC until you turn it off/disable it

| 25% DC | $\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} $ |
|--------|----------------------------------------------------------------------------------------------------|
| 50% DC |                                                                                                    |
| 75% DC |                                                                                                    |
|        |                                                                                                    |

## **DC Motor Drive Half bridge**

Standard Half-Bridge Circuit ("Push-Pull")

CSE@UTA



V+

Half-Bridge Output Driving a Full-Bridge Circuit









## **Rotary Encoders**

- Rotary encoders are rotational sensors (one component of servos), they can provide precise readings (PWM) of shafts turning (flow valves, etc.)
- Internally they can be mechanical, magnetic (induction) based or optical
- Optical encoders are usually of high precision, contain encoder wheels
- Encoders can be absolute or incremental
- They can be read using timers but will tie up microcontroller; there are special purpose circuitry to read them, which have parallel or serial interfaces to microcontrollers







## **CCP Questions?**

- Lab 7 will be detailed and given out soon
  - Take-home lab/project
  - Explained in lab and class
- Remaining Lectures...
  - Hardware Connections (ICSP, .hex details, etc.)
  - Communication (MSSP, SPI, USART, I2C, etc.)